




























































































I 

temp➔next = NULL· 
start➔prev = NULL-' 
free(temp) ; ' 
getch( ); 

--,::\ 
~ 

printf("\n The starting node is deleted"); 
} 
else 
{ 

if (temp➔next == NULL) 
last= 1 · 
else ' 
last= o· 
<:emp➔,next) ➔ prev = temp ➔ prev; 
( emp➔prev) ➔ nex = temp ➔ next· . 
temp➔prev = NULL· ' 
temp➔next = NULL.' 
!ree(temp); ' 
1f(last) 

printf(" \n The last mode is deleted")'. 
e~e ' 
printf("\n Th · e intermediate node is deleted")· } . . ' 
} 
} 
} 
0 48. Write an algorithm to insert new node at the end of a Double Link . · ed list Ans. Insert (value) (PTU, May 2017) 

1. Start 
2· Set PTA= addressof (New node) 
3· Set PTR➔INFO = value· 
4 If FIR ' . 
5 

· S t FISRT = NULL, then go to step 5 else goto step 7 
. e ST = PTA and LAST = PTA 

6. Set PTR➔NEXT - PTA PR . 7. Set LAST ➔NEXT-- ➔ EVIOUS = NULL and goto step 8 
and LAST= PTA - PTA, PTR➔PREVIOUS = LAST, PTR➔NEXT = NULL 

8. STOP. . ' 
a 49. Define header nodes. 

h Ans. A header linked list is a linked list which . {PTU, May 2018) eader node at the beginning of the list always contains a special node called the' 
a 50. How pointers are used to .mana . . Ans. A pointer is a programmin I ge ad~ress of memory ? {PTU, Ma 2019) 

ano~h~r value located in computer me~oanguage _obJect that stores the memory adJress of 
obtaining the value stored at that location r~ : pointer references a location in memory and 

. Q 51. What is dangling pointer g,·ve nown as dereferening the pointer Ans A d r . example ? · been freed ang mg pointer arises when a program ~se {PTU, May 201 9) 
• . · s a memory resource after it has 

□□□ 

Chapter . 
~fl) 
.u)D 

7 
lrees 

B~sic Tree Terminology, Different types of Trees : Binary Tree, Threaded Binary "free, 
Binary Search :ree, AVL Tree; Tree operations on each of the trees and their algorithms 
with complexity analysis. Applications of Binary Trees. B Tree, B+ ,ree : Definitions 
algorithms and analysis. · 

,POINTS TO REMEMBER ~ 

a A tree T is a finite set of nodes such that there is a special node called the root from 
which the remaining nodes can be partitioned into zero, one or more disjoint subsets T\, 
T2, ... .... Tn (N > 0) each of which itself is a tree known as subtree of T. 

a A node of tree stores the data element and may contain zero, one or more link (s) to 
other successor node (s) for connectivity. A node can be a parent, child or both. 

a A directed line from one node to other successor node is called an edge of a tree . 
a Two or more node with same parent are called siblings. 
a The node that has no parent is called the root and the node that has no child is called the 

leaf node. 
a A path is a resulting sequence of nodes when we traverse f~~m one node to other node 

along the edges that connect them. 
a The level of a node is an integer value that measures the distance of a node from the rool 
i& The maximum number of children that are possible for a node is known as the degree c 

variety of node. 
I& The height of a node is an integer value that measures the distance ol a node from tr 

root. 
i& The depth of a node is a the length of unique path from the node to the root of the tn 

i& A binary tree is a tree in which no node can have more than two children . 

I& A binary is a full binary tree if each node has exactly zero or two children . 
i& A complete binary tree is a tree which is either full binary tree or one in which every I 

is fully occupied except possibly for bottomost level where all the nodes must be a 

left as possible. 

83 



D 

84 

~ 

LO=ri:>.> Data Structure & Algorithnis 

A binary tree traversal visits each node of the tree exactly once in a predeterrn~ 
sequence. 

Breadth-first traversal and -depth-first traversal are the two traversal approaches of ti 

binary tree. 

~ Using depth first approach, we may traverse a binary tree in six different sequences, 

however, only three of these sequences namely preorder, inorder and poStorder are the 

standard ones. 
~ In the preorder traversal of binary tree, we first process the root, followed by the leij 

subtree and then the right subtree. 
~ In the inorder traversal of binary tree, we begin by first processing the left subtree, 

followed by the root node and then the right subtree of the root provided subtrees are 

not empty. . . 
· ll:i' In the post-order traversal of binary tree, we process the left subtrees, followed by the 

right subtree and then the root. 
~ An expression tree is a binary tree which is used to represent an arithmetic expression. 

s A binary search tree is a binary tree whose node are arranged in such a way that for 

every node N, the values contained in all the nodes in its left subtree are fess than value 
contained in node N and the values . contained in all the nodes in its right subtree are 

greater than or equal to the value contained in node N. 

~ The inorder traversal ot;lf asT produces an ordered list. 

w To insert a node.. in a BST, we follow the left or right branch down the tree, depending on 

the value. of new node, until we find a null subtree. 

l6f' A heap tree (max tree) is a complete binary tree in which data values stored in any node .. 

is greater than or equal to the value of its children. 

W Insertion and deletion are the key operations performed on a heap tree. 

· ~ As heap tree is a complete binary tree so space is used efficiently when it is implemented 

as an ·array. 

~ Priority queues and heap sort are the key applications of heap tree. 

~ The balance factor-of a node of binary tree is the difference in the height of its left and 

right subtrees. 

~ A binary tree is balanced if the height of its subtrees differ by no more than 1 and its 

subtrees are also balance. 

~ An A VL tree is a BST in which each node has a balance factor of+ 1, o, or -1. 

I@" In LL r~tation, unbalanced A VL tree can be balanced by rotating the out of balance node 
to the nght. 

-rrees_~---------------------------~8~5~ 

I QUESTION-ANSWERS \ 

Q 1. What are threads? ) 
C ·d th r (PTU, Dec. 2004 

Ans. onsi er e inked representation of. a binary tree T as below : 

Head 

~.....__.___X.....J Head node 

X X 

Approximately half of the entries in the pointer fields LEFT and RIGHT will contain null 

elements . . This space may be more efficiently used by replacing null entries by some other 

type of information. Specifically, we will replace certain nulf entries by special pointers which 

point to nodes higher in tree. These special pointers are called threads . 

a 2. What is depth of a complete binary tree? {PTU, May 2005 ; Dec. 2004) 
Ans. The depth or height of a tree 'T' is the max. no. of nodes in a branch of a tree 'T' . 

This is one more than maximum level no. of tree. The depth dn of a comptete binary tree with 

'n' nodes is givep by 

dn = log2 n + 1 

Q 3. Draw a tree corresponding to expression (2x + y) (3x + 5)2. 

Ans. The prefix expression of above tree is : 

* + * 2 X y j + * 3 X 52 

(PTU, Dec. 200s: 



-
~------------------L~O:::...:=l=-i)~.)-D_a_t_a_s_tr~u~ct~u~re~&-;A:lg:;:orithrn 86 ~ (PTU, May 200G) Q 4. What is a spaning tree? 

. t ? (PTU, May 20o-, What do you mean by span,ng ree · , , . . ) . · . tree 'T' of a graph 'G' such that T ,s connected and . Ans. A sparnng tree is a , . · ' · 11 
contains all the vertices as in 'G' and it should contain no cycles. 

OR 

e.g. 

C 
'G' Spaning Tree 'T' 

a 5. How trees are represented in memory using arrays? (PTU, May 200?) 
Ans. In case of array representation of binary trees, the root 'R ' of tree 'T' is stored in 

TREE [1]. If a node 'n' occupies TREE fKJ, then, it's left child is stored in TREE [2*K] and its 
right child is stored in TREE [2* K+ 1 ]. 

e.g. 

A 

/\ 
B C 

/\ /\ 
D E E G 

I 
H 

The above tree has sequential representation as : 

/ A / s / c / o / E / F/ G / 
1 2 3 4 5 6 7 B 9 10 11 12 13 14 15 

Q 6. What is binary search tree? Give example. (PTU, May 2007) 
Ans. A tree 'T' is called a Binary Search tree if each node 'N' of 'T' has the following 

. properties : · · · 
The value at 'N' is greater than every value in the left sub-tree and is less than every 

value right sub tree of 'N'. 
e.g. 

25 

/\ is a B.S.T. (Binary Search Tree) 

15 30 

87 
-rrees :..---,- . · a 1. Discuss the sequential memor . . 

y representation of binary trees. 
Ans. Linked Repersentation of 8 . · {PTU, Dec. 2007) inary Trees · Conside b' 

therwise stated or implied, Twill be mainta· d . · r a mary tree T. Unless o , me m memory by m f \" which uses three parallel arrays, INFO, LEFT and . eans o a mked representation 
First of all each node N of T RIGHT pointer variable ROOT as follows : . corresponds to location K such that 
1. INFO [Kl contains the data at the node N. . 
2. LEFT [Kl contain~ the location of left child of node N. 
3. RIGHT [Kl contains the location of right child of node N. 

· Further more, ROOT will contain th 1 • · . . . . e ocat,on of root R of T. It may sub-tree is empty 
t~en ?orresponding pointer will contain null value ; it the tree T is empty , then ROOT wi;\ 
contains NULL value. 

a 8. There are 8 , 15, 13, 14 nodes were there in 4 different trees. Which of them 
could have formed a full binary tree. (PTU Ans. T : 8, 15, 13, 14 'Dec. 200B) 

LK/2J 

/""-
2*K 2*KH 

15 

/"" 13 14 

8/ 
. a 9. W~~t are siblings? (PTU, Dec. 2009) 
Ans. S1bl~ngs are the nodes of the tree having the same father or parent node. For 

ex~mple, suppose N is a node in a tree T with left successor S1 and right successor s2 . Then 
· N 1s called the parent of S1 and S2. S1 is called the left child or son of N1 and s is called the 
right child or son of N. S1 and S2 are said to be siblings or brothers. 

2 

0 10. What is the best and average case of binary search? (PTU, Dec. 2010) 
Ans. The binary search algorithm is a very efficient algorithm , it has some majo1 

. drawbacks. Specifically , the algorithm assumes that one has direct access to the middlE 
name in the list or a sublist. This means that the list must be stored in some type of array 
Unfortunately, inserting an element in an array requires elements to be moved down the lis 
and deleting an element from an array requires element to be moved up the list. 

The. telephone company solves the above problem by printing a new directory eve1 
year while keeping a separate temporary file for new telephone customers. That is, tr 
telephone company updates its files every year. On the other hand , a bank may want 
insert a new customers in its files almost instantaneously. According, a linearly sorted \ 
may not be the best data structure for a bank. 



88 

Q 11. What is tree? ,, OR 

LO=ti>.) Data Structure & Algorith 

(PTU, Ma~ol'tis 
6) 

(PTU, Dec. 2010 2O 
What is a binary tree? . ' 06) 
Ans. A binary tree T is defined as a finite set of elements, called nodes, such that ; 

· (a) Tis empty (called the null tree or empty tree), or . . . 

(b) T contains a distinguished node R, called the root of T, and the remaining nodes 
01 

T form an ordered pair of disjoint binary trees T1 and T2. · . . 

If T does contain a root R, then the two trees T1 and T2 are called, respectively, the le~ 

and right subtrees of R. If T1 is non empty, then its root is called the left successor of Fl . 
similarly, if T~ is nonempty, then its root is called the right successor of A. ' 

a 12. What is traversal method of a threaded binary tree? . (P_Tu, Dec. 2010) 

Ans. Th~re are many ways to thread a binary tree T, ,but each threading will corresponding 

~o a particular traversal of T. Also, one may_cho~se a one-way threa~ing or a . two-way 

. threading. Unless otherwise stated, our threading will correspond to the morder transversal 

of T. Accordingly, in the one-way threading of T, a thread will appear in the rig_ht field of a node 

and will point to the next node in the inorder transversal of T ; and in the two-way threading 
01 

T, a thread will also appear in the LEFT field of a node and will point to the preceeding node 

in the inorder transversal of T. 

Q 13. What is a AVL tree? (PTU, May 2019 ; Dec: 2O10) 

Ans. An empty binary tree is a an _AVL tree. A non empty binary tree T is an AVL tree iff 

given TL and TR to be .the left and right subtrees of T and h (TL) and h (TR) to be the heights 

. of subtrees TL and TR respectively. TL and TR are AVL trees and \h (TL) - h (TR) ~ 1. 

h (TL) - h (TR) is known as the balance factor (BF) and for an AVL tree the balance 

factor of a node can be either 0, 1 or -1. 

An A VL search tree is a binary seach tree which is an A VL tree. 

Q 14. Write an algorithm for pre order, inorder and posorder traversal in a tree. 

Ans. 

1. PREORD (INFO, -LEFT, RIGHT, ROOT) 

1. . Set TOP = 1, STACK [1] = NULL & PTA = ROOT 

2. Repeat steps 3 to 5 while PTA -:1: NULL 

3. Apply PROCESS TO INFO [PTRJ 

4. If RIGHT [PTR] -:t: NULL, them : 

Set TOP= TOP+ 1, STACK [TOP]= RIGHT [PTRJ 

5. If LEFT [PTRJ -:t: NULL, them : 

Set PTR : LEFT [PTR] 

ELSE 

Set PTR = STACK [TOP], TOP = TOP - 1 

6. Exit. 

(PTU, May 2004) 

Trees 

2. INORD (INFO, LEFT RIGHT RO 
· • , OT) 

1. Set TOP= 1,STACK [1] - NULL 
- & PTR = ROOT 

2 . Repeat While PTR * NULL 

(a) Set TOP = TOP + 1 & STACK [TOP] = PTR 
(b) Set PTR = LEFT [PTR] 

3. • Set PTR = STACK [TOP] & TOP= TOP - 1 

4 . , Repeat steps_ 5 yo 7 while PTR * NULL 
5. Apply Process to INFO {PTR] 

6 . If RIGHT [PTR] * NULL, them : 

(a) Set PTR = RIGHT [PTR] 
(b) Go to step 2 

7 . . , Set P!R = STACK [TOP] , TOP= TOP_ 1 
8 . . Exit. 

3. POSTORD (INFO, LEFT, RIGHT, ROOT) 

1 . Set TOP= 1, STACK [1] = NULL, PTR = ROOT 

2. Repeat steps 3 to 5 while PTR * NULL. . 

3. Set TOP= TOP+ 1 & STACK [TOP]= PTR 

4. If RIGHT [PTR] * NULL, them 

Set TOP = top + 1 & STACK [TOP] = -RIGHT lPTR] 
5. Set PTR = LEFT [PTR] 

6 . Set PTR = STACK [TOP] & TOP = TOP - 1 

7 . Repeat while _PTR > O : 

(a) Apply Process to INFO [PTR] 

(b) Set PTR = STACK [TOP], TOP = TOP - 1 
8. If PTR < 0, then 

(a) Set PTR: = -PTR 

(b) Go to step 2 . 
9. Exit. 

89 

Q 15. What is tree? Explain the type branches of a tree. (PTU , Dec. 20c 

Ans. A binary tree (T) is defined as a finite set ot elements called nodes, s.t . 
1 . 'T' is empty. 

2 . 'T' contains a distinguished node 'R' called root of tree 'T' and the remaining no• 

of 'T' forms an ordered pair of disjoint binary trees T, and T 
2

. T 
1 

and T 
2 

are ca 

left and right sub trees of 'R' . Any node 'N' in a b inary tree has either o, 1 , 

sucessors. 

R 

I \ 



r 
I 

D 

LO=li>.) Data Structure & Algorithrns 
90 

Types of tree~ : . Th t e 'T' is said to be complete if all its levels except 1 c mplete binary tree • e re 
· 

0 
. m no of possible nodes and all the nodes at last level 'bl the fast have the max,mu · poss, Y 'bl . . complete binary tree, each node of a tree can have almost appear as tar as poss, e, i.e . in 

two nodes and /eve/ 'r' of 'T' can have atmost 2r nodes .. 

e.g. 

/ A\ 
B C 

I\ I \ 
D E E F 

The depth Dn of complete tree Tn with 'n' nodes is given by 

Dn = [/og2 n + 1] 

2. Extended binary tree : A binary tree 'T' is said to be a true tree or extended binary . 
tree if each node 'n' has either O or 2 children. The nodes with 2 childrens are called internal 
and nodes with o childrens are called external nodes. 

⇒ 

3. General tree : A general tree is defined to be non empty finite set of elements called 
nodes s. t., 

1. T contains a distinguished element 'R' called root of tree. 
2. The remaining element of T form an ordered collection of zero or more disjoint 

trees T1, T2 , ... .. , Tn. 
e.g . 

A 

/~o 
B C I 

/\ / 1\ C 
E F G H J / \ 

M N 

a 16. Write short notes on : 
(a) B-Trees 
(b) AVL Se,arch Trees 

(c) M-way search Trees (PTU, Dec. 2011) 
Ans. (a) 8-trees : In computer science, a 8-tree is a tree data structure that keeps data 

1 rees 
--- 91 Orted and allows searches, sequential acces . . s · s, insertion and de\et· · \ · h · .,.h _ ree is a generalization of binary search . ton m a gon\ m time. , e B t . tree m that a node can have more \han two children. 

The _database problem and B-tree solves the problem completely. 
1. Time to search a sorted file . 
2. An index speeds the search. 
3 . Insertion and deletion cause trouble. 
4 . The B-tree uses all those ideas. 
(b) AVL Search Trees : In computer science , an AVL tree ~s a sell -balancing binary 

search tree, and it was the first such data structure to be inventeo .".ll In an AVL tree , the 
heights of the two child subtre_es of any node differ by a\ most one. Loo'r-up. insertion , and 
deletion .all take O (log n) time in both the average and wars\ cases , where n is \he number ol 
nodes in the tree prior to the operation. Insertions and deletions may require the tree to be 
rebalanced by one or more tree rotations . 

(c) M-way search Trees: M-way Search Tree: A binary search \ree has one value ir1 
each node. and two subtrees. This notion easily generalizes to an M-way search tree, which 

. has (M ~ 1) values per node and M subtrees. M is called the degree ol me tree. A binar:, 
search tree, therefore, has degree 2. In fact, it is not necessary for every node to contail 
exactly (M - 1) values and have exactly M subtrees. In an M-way sub\ree a node can hav 
anywhere from 1 to (M - 1) values, and the number of (non-empty) subtrees can range lmi 
· o (for a leaf) to 1 + (the number of values) . Mis thus a fixed upper limi\ on how much data Cc 

be stored in a node. 
The values in a node are stored in ascending order, Vi < V2 < .. . VK tr< < = M - i ) a 

the subtrees are placed between adiacent values , with one dimensional subtree at each e1 
We can thus associate with each value a 'left' and •right' subtree , \•, ilh the right subtree o' 
being the same as the left subtree of V (i + 1 ). All the values in V r s lett subtree are \e.ss ti 
V1 ; all the values in Vk's subtree are greater than Vk : and all the va\ues in the sub' 
between V (i) and V (i + 1) are greater than V (i) and less than V (i + i ). 

For example, here is a 3-way search tree : 

3 22 

• • 

66 68 

• • 



~ using a ::;111i:i11 va1ue of~; - - . M waY trees d t ·••. . t mustrate - de correspon s o a Physic In our examples, it wfll be con~enient O large. Each n~ that can be stored in i:ll But bear in mind tliat, in practice, M 1s usu~lly ve~rnber of data ,terns ove from one noct a · block on disk, and M represents the maximum~ processing : to_ rn compared to mo 
8

. to single block. M is maximized in order to spee up sloW operation ving another involves reading .a block from disk - a very .· M H p A F Q · around a data structure stored in memory. . uence J R D G T E and a 17. Design a B.S.T. from following seq TU M perform operation in sequence. . . d (P ' ay 2007) (i) Node J is deleted (ii) Node S is inserte · 
Ans. The in order traversal and 'T' is : A, D, E,F, G,H,J,M,P, Q, R, T . 
Now, final tree is :/ J "" 

/D'\ /R"T 
A /G "'-. '\ p"-E'\ H Q 

(i) Node 'J' is del:ted : Here, 'J' is root node and has 2 children. It is deleted by replacing it with its inorder success i.e. Mand M is replaced by P. . . M 

/~ 
A/\ !R"T 

/G"" '\,_Q 
E H 

"" F 
(ii) Node S is inserted : 

J 

/~ 
D R 

/ \ I"' A G M T 

I\ \J 
\ \ 

. . F Q 
Here, S > J, S > A, S > T. 

93 a 18. For the following tree w 't 
n e the preoder inorder and po·storder traversals. 

A 

/~ C F 

I\ /""' D E G H 

/\\ \/\ I G L M O N 

\ 
K 

Ans. The preorder traversal of tree T is 
ACDIGKELFGMHON 

The inorder traverse of tree r is 
IDGKCELAGMFOHN 

The post order traversal of tree T is 
IKGDLECMGONHFA 

(PTU, Dec. 2007) 

a 19. Discuss different ways of representing a binary tree and suggest an application for each of the representations: . (PTU, Dec. 2009) Ans. There are two ways of representing a binary tree in the memory : 1. • Sequential representation using arrays 
2. Linked represe:tation 
1. Array Representation : An array can be used to store of nodes ot a binary tree. The nodes stored in an array of memory can be accessed sequentially. Suppose T is a binary tree that is complete or nearly complete . Then an efficient way of sequential representation of Tis a linear array Tree as follows: 1.. The root of R of T is stored in TREE (11. 
2. If a node N occupies TREE (Kl, then its left child is stored in TREE l2*K1 and its right child is .stored in TREE [2* K + 11 · 

Fig. 1 Binary search tree 
1 2 3 4 5 6 7 
75 \ 65 \ 85 \ 30 \ 70 \ 76 \ 90 

(a) Array representation of binary search tree of fig. 1 (a) 



-::!4 

4 5 6 7 -L~=c=2=[~3 :[~JL~JL1~6J1=9~0JJ I 75 I I 85 I 
h tree of fig. 1 (b) . of binary searc (b) Array representation . ·th depth d will require an t tion of a tree w1 . . . k' the sequential represen a entation is usually in efficient Generally spea ing, 

8 this sequential repres . t 1 2ct+1 elements. o, array with approxima e Y 
I mplete · t T is complete or near y co . . d ctical way of representing a unless the binary ree . . The most popular an ~ra t d as nodes. Each 2 Linked Representation . . . element is represen e . . . linked list. In linked 11st, every . binary tree 1s using . 

node consists of three fields such as . 
(a) Left child [LEFT] 
(b) Information of the node [INFO] . 
( ) Right child [RIGHT] t de INFO holds the information of every c I ft child of the paren no , The LEFT links to the e f . ht child of the parent node. 

node an d RIGHT holdes the address o ng . 

A 

INFO 
C 

LEFT RIGHT 

X X X X 

(a) Node (b) Binary Tree 

Fig. 2 Node and linked representation of binary tree . 
· d" LEFT or RIGHT is ass1oned to If a node has not left or/and right node, correspon ing -

ULL. . • order and postorder fashion. a 20. Write program to traverse a binary tree in pre (PTU, May 2010) 
. · h"ld · NULL The Ans. If a node has left or/and right node, corresponding L child or R c 1 1s · 

>de structure can be logically represented in C/C++ as : 
struct node 
( 

} ; 

int Info ; 
struct node *Lchild ; 
stuct node *Rchild ; 

typedef struct node*NODE ; 

• 1 rec:" 
95 Pre-order Traversal · To tr · · anverse a non-empty binary tree in pre order , following steps one to be processed : 

1 . Visit the root node 
2. Traverse the left sub tree in preorder 
3. Traverse the right sub tree in preorder. 
It can be implemented in C/C++ function as below : 
void preorder (NODE • Root) · 
{ 

if (Root != NULL) 
printf ("%d\n" , Root ➔ info) ; 
preorder (Root ➔ Child) ; 
preorder (Root ➔ Child) ; 
} 

} 

Post-order Traversal : The post order traversal of a non/~pty binary tree can be defined as: 
1 . Traverse the left sub tree in post order. 
2. Traverse the right sub tree in post order. 
3. Visit the root node. 
In post order traversal, the left and right sub tree (s) are recursively processed before visiting the root. 
void postorder (NODE • Root) 
{ 

if (Root ! = NULL) 
{ 

postorder (Root ➔ Lchild) ; 
postorder (Root ➔ Rchild) ; 
printf ("%d\n", Root ➔ info) ; 

Q 21. Suppose a binary tree Tis in the memory. Write a recursive algorithm or a program which find the number of nodes in T and which find the depth of T. 
(PTU, Dec. 201 Ans. The number of nodes in any subtree is the number of nodes in its le1t subtrE plus the number of nodes in its right subtree, plus one , so you can use a recursive a\gorit\ and start at the root. 

Unsigned int binary tree_count_recursive (const node * root) 
{ 

unsigned int count = O ; 
If (root! = NULL) { 



LO~i>.) Data Structure & Algorlthn,s 

count = 1 + binary tree_count_recursive (root - > left) 
+ binary tree_count_recurs.ive (root -> right) ; 
} 

return count ; 
} 
a 22. construct the binary tree for the following expression. 
(2x - 3z + 5) (3x - y + 8} . . . (PTU, Dec. 2010) 
Ans. construct the binary tree for the following expression . 
(2x ""' 3z + 5) (3x - Y + 8) 

h · tree said to be a complete binary tree? How is it different from a 23. W en ,s a (PTU, Dec. 2004) extended binary tree? . · 'T' · ·d to be complete if all of its levels except possibly the last have Ans. The tree 1s sai . • t "ble nodes and if all the nodes at the last level appear as far as the maximum no. o poss1 . . 
possible. 

e.g. 

A\ 8/ C 
I \ / \ 

D E f G 

/ \ / \ / \ / \ 
I JK LM NO P 

The depth 'On' of complete the with 'n' nodes is given by, 

Dn = log2 n + 1 

A binary tree 'T' is said to be a true tree or extended binary tree if each node 'n' has 
her o or 2 children. The nodes with 2 children are called Interna l nodes and nodes w ith 0 
ldrens are ca lled external nodes. 

n ees 

I ~ ⇒ / 
;· □; ~ 

7 -
._J c.. 

9 7 

0 24. Suppose the following list of letters are to b4I inserted Into an empty b inary 
search tree: J R D GTE M HP AF Q. Find the final tree . (PTU. Dec. 2004) 

Ans. 

/J~ 
D R I\ I \ 

. G M T 

(\ \ 
\ H p 

F \ 
Q 

a 25. What are binary trees? Explain sequential representation of bma.ry \recs . 
(PTU , May 2005) 

Ans. A binary tree 'T' is defined as a finite set of eLemen1s ~ ~ s t , 
1. 'T' is empty (it is called null or empty tree) 
2. 'T' contains a distinguished node 'R' all the~ of tree 'T a~ .r.-.a """9 nooes ol 

'T' forms an ordered pair of disjoint binary t,ees "T . · a.no "Ti . -: . a"'d T 2 are can-ea 
left and right sub trees of 'R'. Any node H Wl a bala1y trees ms. e:;,e, 0. , or 2 
successors . 

T1 T2 

The nodes with no successors are called terrt\11\lll noc:k1s 
Sequential representation of trees : 
Root 'R' of 'T' is stored In TREE [ 1 ). II a noda 'n' ~ TREE {K~. tnen , 1(s lctt child 

stored in TREE [ 2"K) and its right child ts st<XOO in TREE !::• K -t' ll 

TREE K = I A I BI CI O I E I FIG\ I I \ I I l H ~ 
1 ~ 3 " !"> 6 1 g ~ \\) \t \: ll '-' · l 



·Lo=li>> Data Structure & Algorithnis 
98 

/A"' 
B C 

' /'\/\ 
D E F G 

. . / 
H 

h 11 Odes lnorder and postorder traversals are given a 26. A binary tree as n · . . 
below: 

/norder : OBFEAGCLJHK 
Postorder : OFEBGLJKHCA 
Draw the tree. 
Ans. 

A 

/\ 
B C 

/\ I\ 
D E G H 

I JI\ 
F / K 

L 

(PTU, May 2005) 

Q 27. A binary tree has g nodes. The inorder and. preorder traversal sequences 
are given below : . 

. lnorder : E A C K F H D B G 
Preorder : FA E K C D H G B 
Draw the tree. 
Ans. Here, lnorder : EA C K F H D B G 

?reorder : FA E K C D H G B 

F 

/\ 
A D 

/\ _/\ 
E K H G 

I I 
C 8 

(PTU, Dec. 2005) 

.,..... 

-rrees 99 ~ 2a. Suppose that 'n' data elements x . • these elements are to be in . 1, X2, ····• X~ are sorted m descending order, . · serted into an empty binary search tree. Generate 
tile final tree. What ~•II be ~he depth of this tree? (PTU, Dec. 2005) 

Ans. The tree will consist of one branch wh'ich t d f 11 . ex en s as o ows : 
X1 

I 
X2 

I 
xn 

Since T has a branch with all n nodes, thus, depth, o = n. 

a 29. Write a procedure for inorder traversal of a binary tree. What will be inorder 
and post order traversals of following binary tree? lPTU, May 2008) 

Ans. The procedure of inorder traversal in : 
1. Tranverse the left subtree of A in inorder. 
2. Process the root A. 
3. Traverse the right subtree of A in inorder . 
Preorder travesal 

80, 70, 50,20, 30, 75, 73, 74,100, 98,105,101 
lnorder traversal . 

20, 30, 50, 70,73, 74, 75, 80, 98,100,101,105 
Post order traversal 

30, 20, 50, 74, 73, 75, 10, ~8. 101; 105,100, so 
Q 30. What are the different ways for traversing a binary tree. Draw a binary tre 

for the following algebraic expression : 
[a + (b - c)] * [(d - e)/ (f + g - h)] 
Explain pre order and post order traversals of the binary tree (by using examp 

o.f constructed binary tree for the above expression). (PTU, May 2011 ; Dec. 20C 
Ans. Let E denote the following expression : 
E : [a + (b - c)] * [(d - ~)/ (f + g - h)] 



r LO=li>.) Data Structure & Algorithm 100 
· -~ . d" ram given below. One can vanfy th . . The corresponding binary tree T appear ,n rag of T are as follows : E! inspection that the preorder and post order travesales . -(pre order) • + a - b c / - de - + f g h • _ _ · (post order) a b c - + d e - f g + h - 1 · · d t r one can verify that these orders corresponds precisely to prefix an pos ix Polish 

notation of E. /x~/ 
I\ /""'a/\ /-\ /-\ 

b c d e + h 

I\ 
f g 

Tree representation of E (expression) 
a 31. construct a binary search tree to accommodate the given list of integers. 47, 56, 23, 17,64, 36, 29, 22. (PTU, May 2009) Ans. 47, 56. 23, 17,64, 36, 29, 22 -'/ 

47 

/ "' 23 56 

/""- "' 17 36 64 

\ .I 
22 29 

► 

a 32. Find the. order, preorder and post order sequence of nodes of the above tree. 
(PTU, May 2009) Ans. 

Preorder 
47 23 17 22 36 29 56 64 

lnorder 
17 22 23 29 36 47 56 64 

Post order 
, 22 17 29 36 23 64 6 47 

Q 33. Write C functions which take a pointer to the binary tree T and compute the following : 
The number· of leaves in T. 
The number of nodes in T that contain one NON Null child. 
The number of nodes in tree that contain exactly two non null Children. 

(PTU, May 2010) Ans. The number of leaf nodes in a tree is equal to the sum of leaf nodes in the left 

-rrees~-;;~~~~~;-;;~~;::=~-:--------------~~ 
~ee and leaf nodes in the right b 101 s su tree of a • tree is empty than the number of non le f . given node. Note that it the binary (search) t~en the numbe~ of leaf nodes is equ;I t~ t zero and if there is only one node in the tree, The following function in c lang . uage shows the imp\ • typedef struct BST _node { ementatlon of various steps required. struct BST _node*left ; 

int item ; 
struct BST _node *right 
} BST; 
int leaf Nodes (BST *tree) 
{ 

if (tree = = NULL) 
return O ; 

else if ((tree ➔ left== (BST*) NULL) && (tree ➔ right== (BST*) NULL)) return 1 ; 
else 

return (leafnodes (tree ➔ left) + leafnodes (tree ➔ right)) ; 

, 0 34. Draw binary tree.for (a - b) / ((~ * d) + e)),and find ~ut the inorder, preorder and post order traversals. (PTU, Dec. 2007) _ Ans. The expression tree for the expression (a - b) / ((c*d) + e)) 

The traversals of the above expression tree gives the following result. Preorder: (/ - ab+* cde) 
This expression is same as the prefix notation of the original expression. 
lnorder : (a - b) / ((c * d) + e) 
Thus in order traversal gives the actual expression. 
Thus the postorder traversal of this gives us the " Post1ix notation" or the "Revers1 

polish notation" of original expression. 

Q 35. What are the various binary tree traversal te<:hniques? Discuss with exampl and algorithm. • (PTU, May 2019 ; Dec. 201 1 

Ans. Traversing Binary Trees : There are three standard ways of traversing a bina tree T with root R These three algorithms, called preorder, inorder and postorder are as tallow 



Pr -:--------------~L~O~=l~i>~~~D~a~ta~S~t~ru~ct~u~re~&~A~lg~or~ith"'s eorder. 
.,, 

1 . Proces~ the root A 
2· Transvers th · . . 3 Tra 8 e left subtree of R in preorder. · nsverse th · h · • · lnorder : · _ e ng t subtree of R in preorder. 

_ 1 · Traverse the left subtree of .R in inorder. 2· Process the root A. · · 3- Tranverse the right subtree of R in inorder. Postorder: 
1. Transverse the left subtree of R in postorder. 
2. Tranverse the right subtree 

1of R in postorder. 
3. Process the root A. 

· Observe that each algorithm contains the same three steps, and that the left subtree of R is always transversed before the right subtree, The difference between the algorithms is · the .time at which the root R is processed. Specifically, in the "pre" algorithm, the root R is proce$sed b~fore the subtrees are traversed, in the "in" algorithm, the root A is processed between the traversals of the subtrees and in the "post'' algorithm, the root R is processed after the subtrees are traversed. 
The three algorithms are sometimes called, respectively, the node-left-right (NLR) transversal, the left-node-right (LNR) _ traversal and the left~right-node (LAN) traversed. O_bserve that each of the above traversal algorithms -is recursively defined, since the algorithm involves traversing subtrees in the given order. Accordingly, we will expect that a stack will be used when the algorithms are implemented on the computer. 

Example : Let E denote the following algebric expression : 
[a + (b -'- c)J *· [(d - e) I (f + g - h)] 
The corresponding binary tree T appears in fig. The reader can verify by inspection that ,e preorder · and postorder traversals of T are as follows : 

(Preorder) * + a - b c I - d e - + f g h 
(Postorder) a b c - .+ d e - f g + h - / * 
The reader can also verify that these orders corresponds precisely to the prefix and ,tfix polish notation of E as discussed in sec. We emphasize that this is true for any algebric ,ression E. 

rtin9 F, s, a, K, C, L, H, ~ j" f inse 3 ,,v, .w,M,R,N,~ e res.ult o binary tree of degree • (&n" ,..,lily frees 5i,ow th an empty .-- '", -~ 0 36, der. to _ ... ,II) . the or 
1, ~ 111 

.0, 'p,..riS• ' 

Plexity of binary search algorithm? What is com ) a 37, case performance O(log n 
Aris, :::;g:ase performance O(log n) 

B st case performance 0(1) 
V:orst case space complexity 0(1) 

(PTU, May 2011) 

. lgorithm for binary search. What are its limitalions'l(PTU, May 2011) 0 38. wnte an a - • . 

Ans. ·t· 
1
• e- an ordered array, search array searchno.length 1. Im ,a 12 . 

2 . . Initialize low= 0 and high= l~ngth 
3. Repeat step 4 will low < = high. 
4. Middle= (low+ high) 12. 
s. If search arrays (middlel = searchno 

Search is successful 
return middle 
else if 

search array (middlel > search no [highl 
high = middle - 1 
else 

low = middle + 1. (PTU, oec. 201' 
· b" ary search treeS? · a 39. How searchi~g is beneficial u~•.ng in rithlT\. A binary search tree IS a bina

1 

Ans. Binary search 1s an extremely efficient algo . · - . d d · a particular way· 1 tree in which the data in the nodes 1s or ere m ri 
8 

ways of traversa Al explain va ou 201 Q 40 What do you mean by traversal? so (PTU, DeC· · . . oni~) ea trees. - of visiting (examining and/ are c1aS,5ifl Ans. Tree Traversal refers to the process t·ic way such traversalS are • · systema · 11n treflS · node in a tree data structure, exactly once, m 8 tw tvpes of traversa · · ·tad The are O ,, by the order in which the nodes.are v,s, · 

.~~ 



104 

1. DFS 
2.BFS 

LO=ii>.> Data Structure & Algorithms 

1. Depth-first search (DFS) is an algorithm for traversing or searching a tree, tree structure, cir graph. One starts at the root (selecting some node as the root in the graph case) · and explores as far as possible along each branch before backtracking. 
2. Binary Tree : To trav.erse a non-empty binary tree in preorder, perform the following operations recursively at each, node, starting with the root node : 
1. Visit the root · 
2. Traverse the left subtree 
3, Traverse the right subtree . · 
To ·traverse a non-empty binary tree in inorder (symmetric), perform the following 

operations recursively at each node : · 
1. Traverse the left subtree 
2 . Visit the root 
3. Traverse the right subtree. 
To traverse a non-empty binary tree in postorder, perform the following operations 

recursively at each node : 
1: Traverse the left subtree 
2. Traverse the right subtree 
3. Visit the root. 
In graph theory, breadth-first search (BFS) is a strategy for searching in a graph 

. 

when search is limited to essentially two operations : (a) visit and inspect a node of a graph ; (b) gain access to visit the nodes that neighbour the currently visited node. The BSF begins at a root node and inspect all the neighboring nodes. Then for each of those neighbour nodes in turn, it inspects their neighbor nodes wh.ich were unvisited, and so on. 
Q 41 . What do you mean by spanning trees? Explain with the help of diagrams. 

(PTU, Dec. 2011) 
Ans. A spanning tree T of ;:i connected, undirected graph G is a tree composed of all the vertices and some (or perhaps all) of the edges of G. Informally, a spanning tree of G is 

a selection of edges of G that form a tree spanning every vertex. That is, every vertex lies in the tree, but no cycles (or loops) are formed. On the other hand, every bridge of G must 
. belong to T. 

A spanning tree of a connected graph G can also be defined as a maximal set of edges of G that contains no cycle, or as a minimal set of edges that connect all vertices. 
In certain fields of graph theory it s often __ useful to find a minimum spanning tree of a 

weighted graph. Other optimization problems on spanning trees have also been studied, 
including the maximum spanning tree, the minimum tree . that spans at least k vertices, the minimum spanning tree with at most k edges per vertex (Degree-Constrained Spanning Tree), the spanning tree with the largest number of leaves (closely related to the smallest connected dominating set), the spanning tree with the fewest /eaves (closely related to the Hamiltonian 

path problem), the minimum diameter spanning tree, and the minimum dilation spanning tree: 

~-----~----:--------------------~1~0~5 

a 42. What is tree data structure? What are different ways of traversing a tree? 
(PTU, May 2014) Ans. A tree is a widely used abstract data type (ADT) or data structure implementing this ADT that simulates a hierarchical tree structure, with a root value and subtrees of ctlildren. represented as a set of linked nodes. 

A tree data structure can be defined recursively (locally) as a collection of nodes (starting at a root node), where each node is a data structure consisting of a value, together with a list of references to nodes (the "children"), with the constraints that no reference is duplicated . and none points to the root. · 
Different ways of traversing a tree : 
(i) Depth first traversal : 

(a) lnorder 
(b) Preorder 
(c) Post order 

(ii) Breadth first traversal 

Q 43. What are the advantages and disadvantages of threaded trees? 
(PTU, May 2014 

Ans. Advantages : 
1. By doing threading we neglect the recursive method of traversing a tree, which make 

use of stack and consumes many memory and time . 
2. The node can keep record of its root. 
Disadvantages : 
1 . This makes the tree more difficult. 
2. More prone to errors when both the child are not present and both values ot nod 

pointers to the ancestors. 

Q 44. · Design an algorithm to find out if the binary tree is : 
·Strictly binary 
Ans. Strictly binary : 

# ds'· ,1e True t 

(PTU, May 20 



. 106 LO~i>~ Data Structure & Algorithrns 

# define False o 
Int is strictbinary tree (struct tree & n) 
{ 

if (n = = null) return True ; 
if (n ➔ left ! = Null & & n ➔ right I = Null) 
return (is strict Binary Tree (n ➔ left) && 

is strict Binary Tree (n ➔ right) ; 
if (n ➔ left = = Null and n ➔ right = = Null) 

return True ; 
re.turn False ; 

} . "thms Create a binary expression tree 
Q 45. Name various ~ree traversal alg%riusin . all possible tree traversals. 

from the to/lowing expression and traverse 9 · (PTU, Dec. 2012) 

(A * BIC) * D + E + F / (G + H). · visitin each node in a tree data structure·, 

. Ans. Tre_e traversalt~efers to ~~~:~~:~=~s~~s are ~lassified by the order in which the 
exactly once, m systerna ,c way. 

nodes are visited. 
Pre-order 
1. Visit the root. 
2. Traverse the ·left subtree .. 
3. Traverse the right subtree. 

In-order : 
1. Traverse. the left suptree. 

2. Visit the root. 
3. Traverse the right subtree. 

Post-order : 
1. Traverse th_e left subtree. 

2. Traverse the right subtree. 
3. Visit the root. · 

(A* BIG) * D + E + F / (G + H) 

Pre-order : ** Albe + + de + /fgh 

Post~order : abc/*de + fg I h + /* 
Q 46. How a binary tree can be represemed as array structure? (PTU, May 2013) 

Ans. In case of array representation of binary A 

trees, the root 'R' of tree 'T' is stored in tree [1 J. If a node 
8

/ \ -. j A j a j c j o j E j G j 
'n' occupies tree [KJ, then it's left child is stored in tree rf \ /\ · · · · · · · 
2* K] and its right child is stored in tree [2* K + 1 J. E E G 

Q 47. How an element is searched in BST. 
Ans. 1. Start at the root node. 

(PTU, Dec. 2013) 

2. If the ite~ that _you are searching for is less than the root node, move to the left child 

tf:le root node, if the item that you are searching for is more than th t d 
~ roo no e, move to the 

107 
-rrees 
~i,-,ld of tile root node and if it is equal to the root node then you have found the item tnat 
-~C ' 

ng are 1ooking fo.r. 
you 3 _ Now check to see if the item that you are searching for is equal to, iess thah or more u.an 

eW node that you are on. Again if -the item you are searching for is less than U.e current node, 

tile ne to the left child, and if the item that you are searching for is greater than U.e current node, 
rnoV . h h'ld e to the ng t c 1 • . 

rnoV 4 _ Rep13at this process until you find the item that you are looking for or unti~ the n_ode 

sn't have a child on the correct·branch, in which case the tree doesn't contain the item 
doe . f 
wnich you are looking or. 

· Example: Suppose we want to search the element 40 . 

20 40 00 

a 48. Construct the binary tree for the following express\on l2x+5) l3x-v+8)

Give the sequence obtained when tree is traversed in post order 1orm. 
lPTU, Dec. 2.0'\3) 

Ans. 

y 8 

' Q 49. Write th~ algorithm for post-order tree traversal. A.\so show the step: 

this algorithm on a set of numbers to shown an examp\e. lPTU, Mav 2 1 

Ans. Algorithm 
1. Set Top= 1, stack (11 = Null and Ptr = Root. 
2. Report steps 3 to 5 while Ptr * null. 
3. Set top = top + 1 and stack (top 1 = Ptr. 

4. If Right (Ptr] * Null, then : 
set Top= Top+ 1 and stack (Top]= -Right (Ptr1 

5. Set Ptr = Left [Ptr] 
6 . . Set Ptr = stack [top] and Top= Top-1 

7. Repeat while Ptr > o: 
(a) Apply process to \nfo [Ptr1 

(b) Set Ptr = stack (top] and Top= Top-1 

8. If Ptr < 0, then ; 

(a) Set PTR = -PTR 

(b) Go to step 2 
9. Exit. 



LO~i>.) Data Structure & Algorithms Q 5o. Make a binary search tree and a heap tree from the given data : ---
Ans. 

23 7 92 6 12 14 40 44 20 21 (PTU, Dec. 2014) 

Heap tree : 
23 7 92 6 12 14 40 44 20 21 

23 92 92 92 / 
7 

/ \ 
7 23 1/ \ 

/ \ 23 
6 7 / 

1/ \ 
/ \ 23-

92 

⇒ 12/ \ 
/ \ 40 

6 7 / \ 
14 23 

6 

92 

44/ \ 
/ \ 40 

12 7 / \ 
/ 14 23 

6 7 

92 

44/ \ 
/ \ 40 

20 7 / \ 
/ \ 14 23 

6 12 

14 
92 

⇒ 41 \ 
/ \ 40 

20 21 / \ 
/\ / 14 23 

6 12 7 
Q 51. Define AVL and B-trees and their applications ? Explain various operations used tor balancing a binary tree with the help of a suitable example ? 

(PTU, Dec. 2014) Ans. AVL tree : Refer to O. No. 13 
B-trees: Refer to O. No. 16 (a) 

A VL trees are applied in the fo llowing situations : 
□ There are few insertion and dele tion operations . 0 Short search time is needed 

0 Input data is sorted or nearly sorted. 
AVL tree structures can be used in situations which requ ire fast searching. But, the 3 cost of rebalancing may limit the usefulness. 
□ The main area for B-trees is databases (DBs) 

There are DBs larger than terabyte (- 10 12 bytes) and B-trees are useful in such applications . 

Treese;--;;~~~-:;;;~~~~~;;:-:;;:-=-:=------------___:~ 

.:----
□ 8 -t rees have also been used . 1.1 '\ 09 in I e systems 11 is not uncommon that one has a 

round 1 0000 file t h 1 
andles even more files. s a ome in a PC; some servers 

1 
Hence it has found that B-trees are . · When entries that are already sorted event applicable in file systems. te and the tree will look more like a r 

1 
~ es ored in a tree , all new records will go the same rou ~hat under all branches are an is . herelore the tree needs balancing routines, making sure . . . equal number of records . This will keep searching in the tree at optimal speed. Spec1f1cally , if a tree with n d . the tree will be n nod . . . no es is a degenerate tree , the longest path through . es, 11 it is a balanced tree , the longest path will be log n nodes. Algorithms/Lett rotation · This sh h • • . . - · ows ow balancing lS applied to establish a priority heap invariant in a Treap , a data structure which has the queuein;:i per1ormance of a heap , . and the k_ey l~~k up performance of a tree . A balancing operation can change \he tree structure wh ile maintaining another order, Which is binary tree sort order. Tne binary tree order is lel1 to right with left nodes' keys less than right nodes' key whereas the pnority order is up and down, with higher nodes priorities greater than lower nodes' priorrt,es . Attematr.i ely , the priority can be viewed as another ordering key , except that finding a specihc key is more involved . The balancing operation can move nodes up and down a tree wr\hotrt a t1ecting the lett right ordering . A balanced binary tree has the minimum possible maximum height !or the leal nodes, because for any given number of leaf nodes the leaf nxes are p.ac.ed ai the greatest height possible. 

Example : 
ABCDE 

AB/o \ 
/\ E 

AB CD 
/\ /\ 

A BC D 

-.J 

Q 52. Suppose His a complete b inary t ree w ith n elements then in what conditions, · H is called a maxheap? 
(PTU , May 201 5) Ans. Suppose H is a complete binary tree with n e,eT:?- ~s. ~ '"' :: - "' i;; ca ed a heap or mexheap, if the value at N is greater than or equal to th e , a _ea: a..-.~ :' -,""':: cn,ldfen of N. Q 53. State different ways of t rav ers ing b inary tree . (PTU, May 201 5) Ans. The binary tree can be traversed in threa v, a1: s : 

1. lnorder 
2. Preorder 
3. Postorder 
Q 54. What is Binary Search T ree (B ST) ? Make a BST for the following sequence of numbers and Traverse the tree in P reord er. 

45 , 36 , 76 , 23 , 89, 115, 98, 39, 4i, 56 , 69. 48 (PTU , May 2015 Ans. A binary search tree B is a bin;::i r, tree i:: :C' · :-.: :::- -.''. '""' .:11 s.;i;,sites the follow in. conditions . 
1 The value of the left-subt r~e of ·\ · 1s ~, s::; :•·,,,, i'. t.> '- :i u~ al ·:i.. ·. 2: The value of tl1e right-sub\rl' Ll of ·\ · ,s ~~·t'.' .1\d :h-1·1 t:1a \ 3iua al 'x' . 



· · L. o=ri>> oata Structure & Alga . 
110 . . r1tt, 

· · h tree are again binary s~ · 
3. The left-subtree and right subtree of binary searc . . lte1 

Preorder: 
· 23, 36, 39,41, 45,48, 56, 69, 76, 89,98, 115 
a 55. What are the advantages of AVL tree and B-tree? (PTU, May 2015) 
Ans. Advantages of an AVL tree: 
(a) The height of an AVL tree is guaranteed to be<== 1,45I092n where n is the numb .· 

of node$. . · . er 

Hence, all operations are O(log2n). · 
(b) Any imbalance caused by an insertion or deletion can be corrected by just one 0 

two .rotations. 
1 

. Advantages of 8-Tree : B Trees take advantage of this by maintaining a balanced 
binary tree structure through the use of two files : 

□ lnde~ fil~ : ft contain all the keys and tree's topology is represented by the 
orgamzatron of data in this file. 

□ Data file : A file that contains all the objects and information stored by the "tree•. 
Objects contained . here are referenced by block pointer references stored in the 
index file. · 

0 ~6. Give two max heaps ot size. n each, what is the minimum possible time 
omplex,ty to make a one max heap of size from elements of two max heaps ? 

· ·· · (PTU, May_ 2016) 
Ans. O(n), because we can build a heap of 2n elements in O(n) time. Following are the · 

~ps. Create an arra~ of size 2~ and copy elements of both heaps to this array call build 
:ip tor the array of srze 2n. Burld heap operation takes O(n) time. · · 

Q 57. 6 8 

For the given Graph perform following · operations ; · 
[a) Find its -adjacency list. . · 

e
s · resentation for adjacency list and edge list 

111 

. -rre ge rep · 
(b) s!ora_ path rnatrix. . . . {P 
(c) f1rid its 

0 
adjacency, list for the given graph Is TU, May 2016) 

p.ris- (a) Th Neighbors · 
Nte {B, C, D} . 

B {A, C, E) 
C {D, F} 
D {E, F} 

. {F} 

. E {-} 
F 

) e,dge list: . . (b L == {(A,B), (A,C), (A, O).' (B, C).' (B, E), (C, D),_ (C, F), (D, !:.), (D, F), (E, F)} 
path rnatrix : Let G . be a _simple directed grap~ with m nodes_ v1, v2, .. .. . Vm. The path 

(c) hability matrix of G Is them-square matnx P = (Pii) defined as follows: 
~m~ . . . . 

rn _ f 1 If there.is a path from vi to vi 

Pii - lo otherwise . 

d
ure to delete a node from the graph as follows : 

A proce M FLAG) - LETE (INFO, LINK, START, AVAIL, \TE , . . . 
~Esa. What are the threadedbinary trees ? Discuss different operations of node 
. d deletion in these trees. (PTU, Dec. 2016) 

insertion an OR 
. t · a threaded binary tree? How this type of tree helps in traversal? 

Wha IS . . (PTU, May 2013) 

Ans. Threaded binary tree is used to rei:nov_e the 
null pointers. Suppose in· a tree half qf the entries in the 
pointerfields LEFT and RIGH~ ~ill contain null eleme~ts. 
This space may be more efficiently used ?Y repla~mg 
the null entries by some other type of information. 
Specifically, we will replace the certain null entries by 
special pointers which point to node higher in the tree. 

· These special pointers are called threads. The threads , 
in a threaded tree must be distinguished in some way L / 

from .ordinary pointers. The threads in a diagr~m. of a 
threaded tree are usually indicated by dotted \mes. In One-way In °rd

er 
computer memory an extra 1 bit TAG field may be used threading 

to distinguish threads from ordinary point~rs. d d binary.tree : 
The following operations can be defln_ed ~n a 

th
rea e 

· □ Insertion of a node into a threaded binary tree. 
□ Deletion of a node from a threaded binary tr~e. ~away that atter the operat 

The insertion and deletion have to be carried out m sue 

the tree remains the inorder threaded binary tree. 

.J(it""" 



5 

,,.... 
112 

Insertion : 

LO=li>li Data Structure & Algorith 
l'lls -rrees 058 a binary tree T Is In memory. Write a pro d '\'\3 

a &1, sup . . . ce ure to delete au the 

1. When node X is inserted as left child of node Y and node Y has as empty left Chite1 
2. When node xis inserted as right child of node Yand node Y has an empty right Chit~ 
3 . When node x is inserted as left child of node Y and node Y has a non-empty left Chit · 
4. When node x is inserted as right child of node Y and node Y has a non-empty rig~t 

child. 
Deletion : 
1. When X is a left leaf node. 
2. When Xis a right leaf node. 
3 .. When X is only having a right sub-tree 
4 . When X is only having a left sub-tree 
5. When X is having both sub-trees. 
a 59. Write an algorithm to find minimum and maximum element from a binary 

search tree. (PTU, May 2017) 
Ans. Algorithm to find minimum & maximum element in a binary search tree _ 

For minimum 
1 . Start from root node 
2. Go to left child 
□ Keep on iterating (or recursively) till, we get left child as null 

□ We found the minimum value in binary search tree. 

For maximum 
1 . Start from root node 
2. Go to right child 

□ Keep iterating (or recursively) till we found right child as null. . 

□ We found the maximum value in binary search tree. 

Q 60. What is binary search tree? Draw the binary search tree for the following input: 
14, 5, 6, 2, 18, 20, 16, 18, 9, 21 (PTU, May 2018) 

Ans. Binary search tree : Refer to Q.No. 6 
Binary search tree 

14 14 

/ 
5 

(a) (b) 

14 
/14'\ / '\ 

18 5 18 

/14 

5 

\ 
6 

(c) 

/14'\ 

5 18 

/14 

5 
·1, 
2 6 

(d) 

/14" 
5 18 

/14" 
5 18 

I\ 
2 6 

(e) 

/14" 
5 18 

. ..;,11,al nodeS,edure to delete leaf node from binea~ tree. -(PTU, May 2.0'\8) 

-·· p~ -~ . A05 · d · .:::bits/std C++.h> . 
,.,.;nclu e std· 
tr • arnespace , 
us1nQ n 
struct n~de{ . 
int data, * . ft· 

t Node le ' 
struc N de * right; 
struct o 

}; Node* New Node (int data) 
struct . . 

{ t Node * temp = New Node; · 
struc . d t • . 

➔ data= aa; · 
temP left = temp ➔ right = NULL; 
temp ➔ 
return temp; 

~truct Node * insert (struct Node * int data) 

{ 
If {root = = t;lULL) 
return new Node (data); 
If {data ~ root ➔ data) 
root ➔ left = insert (root ➔ left, data); 
else If (data> root ➔ data) . 
root ➔ right = insert -(root ➔ right, data); 

return root; 
} . 
void inorder (struct Node • root) 

{ 
If (root I = NULL){ 
iriorder (root ➔ left); 
cout <<root ➔ data << " "; 
inorder (root ➔ right); 
} . 

} . 
struct Node • · 1eaf Delete · (struct Node • root) 

l 
If (root ➔ left = = NULL && root ➔ right = = NULL) l 
free (root); 
return NULL; 
} 

/\ \ I\ /\ I\ I\ 
16 20 2 6 16 20 

I\ I\ /\ /\ 
2 6 16 20 

root➔ left= leaf delete (root➔ left); . -
root➔ right= leaf delete (root ➔ right); 

return root; 
2 6 20 2 6 2 6 16 20 

I I I I I I 
18 9 18 9 18 21 ) 

(f) (g) (h) (i) 0) int main () 



~~--
str.uct N · 
roo . . Ode* root= NULL; 
. t = insert (root 20)· 

!0 sert (root, 1 O); ' ' 

!nsert (root, 5); 

LO=ti:>ll Data Structure & Algorithnis c1iaP ter 

!nsert (root. 15); 

· !nsert . (root, 30); 

!nsert (root, 25); 

!nsert (root, 35); 

cout <<"lnorder before deleting the leaf node "<< endl; 

· inorder (root); 
cout <<end/; 
leafdelete (root); 
cout <<"lnorder after deleting the leaf node" <<end; 

inorder (root); 
return O; 
} 

Q 62. Are B trees of order 2 are full binary trees? If yes, explain how. 

. 
. (PTU, May 201S) 

Ans. B tree of order 2 is fully binary tree. In order for the B tree to function there needs 

be a choice In the number of keys. This means that the smallest possible B tree node is 

9 that has either one or two keys. That's basically a (2, 3) tree and reportedly that's exactly I 

v B trees were invented as a generalisation of (2, 3) trees. · 

Q 63. Discuss recursive procedure in trees. , (PTU, May 2019) 

Ans. A recursive procedure is an algorithm that handles a list of items, where each item 

be itself a list by decomposing the process into the handling of the first it~m of the list & 

w this by the handling of the remainder of the l!st. A recursive procedure is a way of 

ng problem that contain a number of item · to be processed. The major problem that can 

r In recursive structures is circularity. A tree· is not circular. There is no problem in these 

-ures. B~cause circularity is an undesirable property, a program that verifies whether an 

1g recursive data structure contains c;;ircularity is required. 

□□□ 

4 . Sorting and Hashing 

• • d properties of different sorting alg~rithms . s I . 

· e an 
• e ect,on s rt 

obje~1v sort, Quick Sort, Merge Sort, Heap Sort; Performance and O 
, B_ubble Sort, 

11,sert1on hods, Hashing. . Comparison among 

he rnet . 
all t 

,POINTS TO REMEMBER~ 

. actually refers to the operation of arranging data in som . 

sorting . . h . . e given order, such as 

jj' . ·ng or decreasing, wit numencal data, or alphabetically With h 

increas1 : • c aracter data. 

sorting is. a process of arranging the elements in a parti~lar order. 

jj' rt· 9 is generally classified as either internal or external In an internal rti 
11 

th 

Iii" so 1n . . . · so ng, a e 

elements are held m primary storage dunng the sorting process. An external sorting 

·primary storage for the elements currently being sorted and ~"'"' storage for 

uses f't . . --- ....... , 

any data that does not 1 · in pnmary memory. 

Iii" In insertion sorting, we choose a particular element and then insert it at the appropriate 

locajjon in the sorted subarray. . 

Iii" In ~~lection sort, we repeatedly find the next smallest element in the list and move it to its 

final position that it will occupy in the sorted array: 

« · Merge sort is based on the divide and c.onquer·strategy in which we divide the data into 

smaller pieces, recursively conquer each piece and merge the result into a final result .. 

« · Bubble sort algorithm is used for sorting a list. 

s Bubble sort algorithm compares two numbers at a time and swaps them if they are in 

wrong order. · · 

Iii' Quick sort is one the fastest sorting algorithm used for sorting a list. 

Iii' Merge sort is a comparison based sorting algorithm. . 

~ Sele~tion sort is a sorting algorithm, specifically an in-place companson sort. 

~ Time complexity of selection sort algorithm is O (n2). ( list) is built c 

. . . h in which the sorted array or 

· w Insertion sort is a simple sorting algont m 

entry at a time. · . . h' h we could probably find the c 

h technique in w ,c 

W Hashing is the most efficient searc 

in only one comparison. 

115 

-



116 ~D S ~ Mn!I · - ~ · 
q- . ata tructure & Algorithl'll nd H35 rison based sorting algorithm Th . · 117 Hash table is an array of • · s rtJflll II rt • A cornpa · e input ord 1 data eff' . 

1 
.• some constant size which is used for sorting and maintaini . ,o ,ge so · er s Preserved.In \he 

icient Y so that il' can be retrieved quickly. · · rig p.teutpLJt. . "thm is as follows : . 
11:lr Direct division . 'd . ed O sort algon . . ' • mi square, folding methods are the mpst commonly used hash funcu 5o~ .,i8 rge th of the list 1s O or 1, and then 1t Is considered a· · . on. ... 1en9 d r . · . . s sorted. - . 1 . fh8 . divide the unsorte 1st into 2 hsts each about h If 

f QUESTION-ANSWERS f 2: otherw~:~ub list recursively. Implement the step 2 until the~~he si~e. 
-------, _____ _. 

3. sort 8~ 
1 

st~p. combine (merge) both. the lists back into 
O 

· sub l~ts are sorted .. 
. Q 1~ What do you mean by sorting? AS a f1na ne sorted hst. · 

· . Ans. Sc;,rting actually refers to the operation of arranging data in some given Ord 4· t Is selection sort? (P · 
such as increasing or decreasing, with numerical data, or alphabetically, with character da::: . 0. 6; :h:ction sort is a sor;ting algorithm, specifically an in-place co;u, _May 2019) 

Q 2. What do you mean by external sorting? 1,ris, . e e complexity' making it inefficient on large lists, and genera\\ panson sort. It 
· . 

5 
o (n2

) t~!Tl . sertion sort. Selection sort is noted for its simplicity and I yhpertorms worse Ans. External sorting is a term for a class of sorting algorithms that can handle massiv na sirnilar 1n - . . - . . . , a so as performance 
am_ounts of data. External s_ orting ._is_ requir_ e_d· whe __ n_ the data being sorted does not fit into thee ,1.911 1h8 r more complicated algonthms m certain situations particular! h .. u• tages ave ' Y w ere auxiliary main memory of a computing dev,ce (usually RAM) and a slower kind of memory (usually advan .

5 
i·irnited. · 

· hard drive) needs to be used. · · · a roernorY 1 "thm • · . . 
One example of external sorting is the external mergesort algorithm. Algon t· t p. osition as current position. · 1 set ,rs . . . 
Q 3. Explain the bubble sort algorithm. · · . d the minimum value in the hst. 

2 Fin I . th . t 't' Ans. Bubble sort algorithm is used for sorting a list. It ma"es use of a temporary variable . 
3
:. swap it with the va ue in e _ cur~~n pos1 ion. 

for swapping. It compares tw,o numbers at a time and swaps them if they are in wrong order . , set next position as current pos1t1on. 
This process is repeated until no swapping is needed. The algorithm is very inefficient if th~ :: Repeat steps 2-4 until you reach end of list. 
list is long. -· 

L. t 7 4 5 3 a 7. What is insertion sort? . (PTU, Dec. 2015\ e.g. IS : I 
1 _ 7 and 4 are compared . .- Ans. Insertion _sort is a simple sorting algorithm in which the sorted array (or list) is built 
2. Since 4 < 7, 4 is stored in a tempO'rary variable. · entry at a time. It is much less efficient on large lists than more advanced algorithms such one . rtH .. 3. The content of 7 is now stqred in the variable which was holding 4. · as quicksort, heaps~rt, or me~ge so • · owever, insertion sort provides sev.eral advantages: -

4. ,Now, the content of temporary variable and the variable previously holding 7 are • · Simple implementation 
swapped. · • Efficient for (quite) small data sets 

Q 4. What is quick sort? _ (PTU, May 2015) 
Ans. Quick sort is one the fastest sortin'g algorithm used for sorting a list. A pivot point · 

is chosen. Remaining elements are portioned or divided such that elements less than the 
pivot point are in left and those .greater than the pivot are on the right. Now, the elements on 

· the left and right can be recursively sorted by repeating the algorithm. · · 

Q 5. Explain quick sort and merge sort algorithms. 
· Ans. Quick sort employs the 'divide and conquer' concept by dividing the list of elements 

into two sub elements. 

The. process is as follows : 
1. Select an element, pivot, from the list. 

2. Rearrange the elements in the list, so that all elements those are less than the pivot 
are arranged before the pivot and all elements those are greater than the pivot are 
arranged after the pivot. Now the pivot is in its position. . 

3. Sort t~e both sub lists - sub list of the elements which are less than the pivot and the 
list of elements which are more than the pivot recursively. 

• Adaptive (i.e., efficient) for data sets that are already substantially sorted: the time 
complexity is O (n + d), where dis the number of inversions. 

• More efficient ,n practice than most other simple quadratic (i.e., 0 (n2)) algorithms 
such as selection sort or bubble sort ; the best case (nearly sorted input) is O (n). 

• Stable ; i.e., does not change the. relative order of elements with equal keys. 
• In-place ; i.e., only requires a constant amount O (1) of additional memory space. 

· . • Online ; i.e., can sort a list as it receives it. 

Q 8. Comparison of insertion sort with selection sort argorithms. 
· Ans. Insertion sort is very similar to selection sort. As in selection sort, after k passes · 

through the array, the first k elements are in sorted order. For _selection sort these _are: 
smaUest elements, while in• insertion sort they · are whatever the first k ~lements were m th 

· unsorted array. Insertion sort's advantage is that it only scans as many elements as needed 
to determine the correct location of the k+ 1st element, while selection sort muS

t 
scan all 

. remaining elements to find the absolute smallest element. · parlsOns 
Calculations show the insertion sort will usually perform about half as many com 



r 
1 18 1 LO=li>~ D~ta Structure & Algorith!tis 

as selection sort. Assuming the k+ 1st element's rank is random, insertion sort will on a~ 

require shifting .half of the previous k elements, while selection sort always requires scan~g~ 

all unplaced elements. If the input array is reverse-sorted, inserton sort performs as Ill Ilg 

· comparisons as :selection sort. If the input array is .already sorted, insertion sort perfofllls~ 

few as n-1 · com,iarisons, thus making insertion sort niore efficient when given sorted or "nea~t 

• · sorted" arra~s-:' · . · Y 

Q 9./Explain h~ap sort. . . . . (PTU, May 2019 I 
Ans. The binary heap data structures is an array that can be viewed as a cornpI81) 

~inary tree. Each node· of the binary tree c~rresponds to an element of the array. The arra; 

1s completely filled on all levels ~xcept possibly lowest. 

25 

5 8 

we represent heaps in level order, going from left to right. The array corresponding 10 

the heap above is [25, 13, 17, 5, 8, 3]. · I 
. The root of the tree A [1 J and given index i of a node, the indices of its parent, left child 

and right ctJild can be computed • 

· PAAENT(i) 
return floor (i/2) 

LEFT() . 
return 2 

RIGHT (i) 
return 2i + 1 1· 

Let's try these out on a heap to make sure we believe they are correct. Take this heap, 

20 

Which is represented by the array f20, 14, 17, 8, 6, 9, 4, 1]. 

We'll go from the 20 to the 6 first. The index of the 20 is 1. To find· the index of the left 

child, we calculate 1*2 = 2. This takes us (correctly) to the 14. Now, we go right, so we 

calculate 2*2 + 1 = 5. This makes us (again, correctly) to the 6. · 

Q 10. How elements ·are inserted in heap? ' 

Ans. Suppose we have a heap as follows : 

1 
want to add a node with key 15 to the heap. First, we add the node to 

. t'S su·ppose wet available at the lowest level of the tree. This is to ensure that \he tree 

1..e next spo 
at the 

11,e tr~e cornplete. • 

. reflla1ris 20 

1 15 . 

· ·. . . , u ose we want to add a node with key 15 to the heap. First, we add the_ node to 

. Let s 5 PP xt spot available at the lowest level of the tree. This is to ensure that the tree 

the tree at the ne . . . 

remains compl~te. . . 

1 8 
. 

Now we db the same thing again, compar,ing the new node to its parent. Since 14 < · 

we have to do another swap : 

Now element are inserted because 15 s; 20. 



----
120. r . 8.,dHash;n!l~;:i;---'---_--------~.:.:..._-~---1!1 -~---------------~-=1.=o=l~i>=->....:D=-=a=ta:..:S:.::tr=-=u=ct::.ur:..:::e:...::&~A~lg~oritti '.So,t1n9~N (A. N) 11'\ Q 11 · (PTU De ---..!lls ~si;.ELLEECC~ '"" at st.;.n5 2 and 3 for_ K = 1, 2, · ..... , N ~ 1 . What Is the complexity of merge sort? c - '- e ...,.. 1 

A . . ' . . 2oosi r .· .. 1. RePII MIN. (A, K, ·N, '·OC) . ns. Complexity of merge sort is as follows : ca L . K} .l 
(i) Worst ·case_: 0 (n log n) . 2- set TEMP= A tK], A. l = A LOC] & A tLOCJ = TEMF> 
(ii) Average case : O (n log n) . 

. ) 3 Exit Th" I "th f" (Iii) Best case : o (n log n . · A' t<, N, LOC) 1s a gon m . mds the location LOC · 
_· 11,UN t<( A[K+1l, ······ A{Nl . •. . . . . . of \he,~mallest elemen, Q 12. Write the time complexities of quick sorting method. 

Ans •. (i) Average case : 0 ·(n * log (n)) 
. . (PTU, May 20_0Q) . ~rriori;t[ J~t MIN = A [Kl & LOC = K · (ii) Best case : O (n * log (n)) 

(iii) Worst case : O (n2). 
I . 

Q 13. What Is the need for external sorting? ·· _ (PTU; Dec. 2008 I 
• Ans~ External sorting is a method used to sort elements which are two_ large to fit in th l 

main memofy of the computer. Any sorting algorithms that uses external memory, such 8 

t~p,e . or disk, during sort is called external sort. Since most common sort algorithms assu;s 
· high speed random access to all intermediate memory, they are unsuitable if the values to b 8 

· sorted do riot fit in main memory. The main concern with external sorting is to minimi.2 
8 

external disk access-since reading a disk block takes about a million tirnes longer_ than accessin 
8 

an items In RAM. · . · • . 9 I 

Q 14. Write a program to sort inte'ger using selec,tion sort._ . (PTU, May 200S) 
. Ans. In selection sort, . first find the first position. Then find the second smallest element 
1n the list and put it in the second position. 
· Suppose we want to sort the integers. 

n, 33, 44, 11, aa, 22, 66, 55 

r · Pass, LOC A[1] A[2] A[3] 

K= 1, LOC~4 @ _33 44 

K=2, LOC=6 11 @ 44 

K=3, -LOC=6 11 22 @ 
K=4, LOC=6 11 22 33 

K=5, LOC=B 11 22 33 

K=·6, LOC= 7 11 . 22 33 

K = 7,, LOC·= 7 . 11 22 33 
Sorted: · 11 22 33 

A[4] 

@ 
77 

77 • 

@ 

44 

_44 

44 

44 
· Thus algorithm sorts the array A with N elements. 

A[5] A[6] A[7] A[8] 

88 22 66 55 

88 @ 66 55 

88 @ 66 55 

88 @ 66 55 

88 77 66 @ 
55 ® ® 88 

55 66 ® 88 

55 66 .77 88 

2 Repeat for J = K + 1 ' K + 2, ..... N 
. If MIN > A {Jl, then : . 

set MIN = A{J}, LOC = J 

3 Return. . · 
Here, complexity= O (n2

) 

0 15. sort the following list of numbers 
52, 1, 27, 85, 66, 23, 13, 57 . 
Using any efficient sorting algorithm. 
Aris. The list Of given numbers sorting using bubble so 

Pass 1 :. @ G) 27 · 85 · 66 23 13 · 51 

Pass 2: 

1 · @) @ 85 . 66 23 . · 13 57 

·1 27 @) @ . 66 23 13 57 

1 27 

1 27 

1 27 

1 27 

1 27 

0 ® 
1 ® 
1 27 

1 27 

1 27 

1 27 

52 · @ @ 23 13 57 

52 66 @ @ 13 57 

52 66 23 @ @) 57 

52 66 23 13 @ . @) 
. 52 66 23 13 57 85 

52 66 23 13 57 85 

@) 66 23 13 57 85 

@) 13 57 85 @) 23 

52 

52 

52 

@ 
23 

23 

@ 
@ 
13 

13 57 85 

@ 57 85 

@)@) 85 

1 ·27 52 

Pass 3: G) @ 52 

23 
23 

13 
13· 

57 66 85 

57 66 85 

1@@ 23 13 57 66 85 

{PTU, Oec. 2 



~ d""shin!l--------~------_!_2_2 __ __: _____________ --=Lo-=-=-=t=-i>=-~-=D-=a..::ta:.....:s:..:.tr-=u..:.:ct:.::.ur:...:e:...:&:.::A~lg~orith rtif19 ~ 1 ft to right 
27 @ @ 13 57 66 ~ ~ scan from e 

:: 6- s@ RU TT URE T 1 27 23 57 66 

85 from right to left : scan 
1 27 

® @ 
_23 13 52 57 66 

Pass4: (D @ 
1 .@ 
1 23 

1 23 

23 13 

@ 
52 57 66 85 1- S ER UTT U R @ T 

13 52 

@ @) 52 

13 27 52 
Pass5: (D @ 13 27 52 

@ @) 27 52 

1 • 13 23 27 52 
Pass 6: 1 13 23 27 52 
Pass 7: All elements are solved. 

57 

57 

57 
57 

' 57 

57 
57 

66 

66 

66 

66 

66 

66 
66 

85 

85 

85 

85 

85 

85 
85 

Q 16. Sort the string DATA STRUCTURES using quicksort. 

Ans. (a) @ATA STRUCTURES 

{PTU, Dec. 2004) 

1. Scan from right to left, until finding a character which precedes D alphabetically. It is 
C; Interchange D & C to obtain : 

CAT AST R U @TUR ES 
.. 

2. · Now, scan the list from left to right, until finding a character which succeeds o 1 
alphabetically. It is 'T'. Interchange D and T. 

C·A @AST R UC TU R ES 

3. Again scan from right to leftto obtain, 

CAA@STRUTTURES ----Sublist 1 Sublist 2 

4. @AA . 
. Scan from right to left to obtain : 

· from left lo right" 
8

_ scan 

sER@TTURUT 

scan from right to left 
9. ® 

sERRTTU S UT 

scan from left to right 10. 

sERR@)TUTUT 

11 .@ERA 
Scan from right to left to obtain : 

REA@ ------ . 

@ER 

12. scan from right to left 

E@R 

13.{!)UTUT 

scan from right to left 

TUTU G) 
14. Scan from left to right 

TG)TUU 

Hence the final result is 
AACDERRSSTTTUU AA@ 

Q 17. Sort ~he following list of elements using B,ubble Sort : 
5. @TRUCT URES 

Scan from right to left to obtain : 

STRUCTURE@ 

98 89 44 7 5 35 12 100 2 57 
What is its complexity? 
Ans. 

Pass 1: @ @) 44 7 5 35 12 100 2 57 

(PTU, M; 



...!_24 
~ nd r1as11inQ:1__--::;::--::~:-;~;:---;-;--=------

•nga =- r-;-,., 12 35 2 
- ----~-----------=LO:::~....::i>:::3'::_:::D~at~a-=S~tr~uct~u~r~e~&~AII . ,ort' • @ 0 

44 57 89 98 '\00 
90nl:I) ,.5S 5 " @ 

1"00 2 57 ' ~ p.. 5 0 12 35 2 44 57 89 98 '\00 

89 98 '\00 

89 98 '\00 
89 98 '\00 . 

89 @) 
89 44 

89 44 

89 44 

89 44 

89 44 

89 44 

89 44 
89 44 

@ 7 5 

@) 0 5 

7 @) ® 
7 5 @) 
7 5 35 

7 . 5 35 

7 5 35 

7 5 
7 5 

35 12 

35 12 

35 12 

@) 12 

@ @ 
12 @ 
12 98 

Pass 2: @ @ 7 5 

35 . 12 .98 
35 12 98 

35 12 98 

44 @ 0 5 

44 7 @ ® 
· 44 7 5 @ 
44 7 5 35 

44 7 5 35 

44 7 5 35 

44 7 5 35 
44 7 5 35 

Pass 3: @ 0 5 35 

7 ·@ ® 35 

7 5 @ @) 

35 12 98 

35 12 98 

@) 12 98 

@@ 98 

12 @ " @ 
12 89 @) 
12 89 2 

12 89 2 

12 89 2 

12 

12 

100 ·2 57 5 7 @ @ 2 44 57 

100 2 57 5 7 12 @) @ 44 57 

100 2 · 57 . 5 7 12 2 35 44 57 

1 oo 2 57 \ ts"\ CD 12 2 35 pass 6: \..V 
@ 2 57 · 5 G) @ 2 . 35 

44 57 89 98 '\00 
44 57 89 

@ @ 57 \ 5 7 ®22 @ . 35 
5 7 12 35 44 

44 57 
57 

57 

57 

98 '\00 

89 98 '\00 

89 98 '\00 2 @ @) fc\ r-;-... 2 12 35 4 
2 57 100 pass 7 : 0 0 4 89 98 '\00 
2 · 57 ·100 5 G) @ 12 35 44 89 98 100 

2 

2 

2 

2 

2 

® 
@ 
57 
57 

57 

57 

57 

57 

57 

57 

@ 
98 

98 

foo 
100 

100 

100 

100 

100 

100 
100 
100 I 

5 2 7 12 35 

pass 8 : ® @ 7 12 35 
2 5 7 12 35 

pass 9: All list are sorted. 

44 57 

44 57 
44 · 57 

89 

89 

89 

98 '\00 
98 '\00 
98 '\OQ 

0 18. Write a algorithm for sorting numbers using heap sort. 
Ans, Algorithm : · 
Heap cre!ltion Algorithm 
step 1. [Create heap1 

Repeat through Step 7 for k = 2, 3, ............... , n 
step 2. [lnitialize1 , 

i=k · 
temp = data [kl 

Step 3. [obtain parent of new elementl · 
i = i/2 

Step 4. [Place new element in the existing heapl-

lP1'U, May 2.0'\4) 

7 5 35 @ @ 

89 2 

89 2 

89 2 

57 

57 

57 

98 100 

98 100 

98 100 

98 100 
Repeat through step 6 while (i > '\) and (temp > data ti\) 

7 5 35 

7 5 35 

7 5 35 
7 5 35 

Pass 4: 0 0 35 

5 0 @ 
5 7 @ 
5 ' 7 12 

5 7 12 
5 7 12 

12 

· 12 

12 

12 

12 

12 

@ 
@ 
35 
35 

@·· @) 
@) 44 

44 
44 
44 

44 

44 

@ 
@ 
2 

2 

2 

2 

2 

2 

2 

0 
44 

2 57 

0 57 

@) ® 
57 89 

57 89 

57 89 

57 89 

. 57 89 

57 89 
57 89 

98 100 

98 100 
98 100 

98 100 

98 100 

98 100 

98 100 

98 100 
98 100 

Step 5. [Interchange elements\ 
data li1 = data U1 

Step 6. [obtain next parent1 
i = i 
i = 1/2 
if = (i < 1) then i = 1 

Step 7. [copy new element value into its proper p\acel 

data li1 = temp 
Step 8. Return. 
Heap Sort Algorithm 
Heap_sort (data, n) 
where data represent the list of elements 



'T . dHashi09 . . . . . . 127 
LO=ti>_ > Data ~tructure &Algori~_s ..11ng·a11 . a hash or hashing functions which gives a location in memory b 1 1 ..!_26 ~ --. 50,.. •t-1' 1s . . Y ~PP y ng 

wnere,_ • uniquely determined element. · 
f /ements in the list. 

n represents number O e 
·Step 1 [Create initial heap] 

· call Heap-Creation (data, n] 

St 2 [Start sort] . . 
ep · Repeat through step 10 fork = n, n-1, •·······• 2 

Step 3. (Interchange elements] 
data (1 J = data [k) 

Step 4. temp = data [11 
i = 1 

.. j = 2 . . 
Step 5. .[Find index of largest child of new element] 

If j+1 <k then . 
If data U+·1] > data U] then 

j = j+1 
S,tep 6. [Recreate the aew heap] - . 

· Repeat through step 10 while j. < = k ..,.1 and data U]> temp 

Step 7. [Interchange element] . 
data [il = data U] 

Step a: .. [ obtain left child] 

Step 9. 

Step 10. 

Step 11. 

i =j 
j = 2 * i 
[obtain index of next largest child] · 

if j + 1 <k 
If data U+ 1 )> data U) then j = j + 1 else if j >n then j = 1 
[copy element into its proper place] 
data U) = temp 
Exit 

I 
. I 

Q 19. Write a short note on Hashing. (PTU, May 2006) 
Ans. Hashing is a searching techniques which is independent of 'n'. Suppose there is a 

file 'P of 'n' records with a set 'K' of keys which a uniquely determine records in 'F'. 'F' is 

maintained in memory by a table 'T' of 'n' memory locations and 'L' is the set of memory 
• address of locations in 'T'. 

H:K ➔ L 

'H' is a hash function, which gives a location in memory by applying on 'K' . 'K' is uniquely 
determined element. . 

Q ·20. Define hash function. (PTU, May 2009 ; Dec. 2009, 2008, 2005) 

. Ans. Hashing is a searching technique which is Independent of 'n'. Suppose there is a 

file 'P of 'n' records with a set 'K' of keys which uniquely determine the record in 'F'. 'F' is 

maintained in memory by a table 'T' of 'n' memory locations, 'L' is the set of memory addresses 
of location in 'T'. • · . . · · 

H:K_➔ .L 

•t<'. •t<' 15 anf\ction can be determined by the following methods : 
•t oil · i,ash u · 1 1118 • •5100 method . 

. DtVI d 
(('.?) Mid square metho 
II ldinQ method. ... ) fo 
(II' 

1 
What does Hashing mean? Explain the technique h, . detail. _ 

Q 2 · (PTU, May 2019, 2010, 2004; Dec. 2006) 
OR . 

. . 

. hashing? Discuss basic _hash functions with example1 (PTU, May 2007) 
What ,s O.R . 

. hashing? Give the characteristics of hash function; Name different hash 
What 1s . 

: · . ns · · _ · (PTU, Dec. 2009) 
tunctto · Hashing is a searching technique which is independe'nt of 'n'·. Suppos-e there is a 

. , ~~~~. records. With a set 'K'of keys, which techniquely determines records In 'F'. 'F' is 

fde .. f ~ d in memory by a table 'T' of 'n' memory locations and 'L' is the set of memory 
n,ainta1ne . . , , . 

dresses of 1ocat1ons m T . . · · . . 
ad · H:K ➔ L · 

'H' is a hash or hashing function which gives· a location in memory by applying it on_ 'K'. 

Hash functions : . . . · 

1~ Division method: In this method, choose a no. m > n of keys in 'K'·, which may bE 

prime no. or a no. without small directions. The hashing function is 

H (K) = K (mod m) · 

H (K) = K (mod m) + j . 

2. Mid square method : The ·key 'K' is squared and 'L' is obtained by deleting digi 

from both ends of K2 • 

.. 3. Folding method : The key 'K' is partitioned into a no. of parts K1, K2 ...... Kr, WhE 

each part except the last has the same no. of digits as required address. Then, parts : 

added together ignoring the last carry to get the address 

H (K) = K1 + K2 + ...... + Kr 
e.g. Suppose_ there are 68 employees and 100 locations having 2-digit addresses 1 

00 to 99. Apply three methods on following keys. 

Keys (K) : 3205 148 2345 

(i) Division no : 

Let m = 97 

H (3208) = 4, H (7148) = 67, H (2345) = 17 

(ii) Mid square method : 

K2 1027025 57093904 5499025 

72,93 and 90 are addresses of digits. 



128 LO•;» Data St,uctu,e &.Al ~ hlog 
....:..:.:._ ________________ __:::..:.------...::.:...::~ 9oriti) and Has . 129 

(iii) Folding method : 
· ~ 50r1Jn9 llision : It is possible that two non-Identical keys K~ K2 . 

1-1ash cdodr· ess This situation is called hash collision Collisions' alare ~ into the 

H (3205) : 32 + 05 = 37 
H (7148) = 71 + 48 = 19 (Ignore carry) 

H (2345) = 23 + 45 = 68. 

. Q 22. What are the various types of hash function. How colli~;n is haradle 

while hashing. ( U, May 20
10

11
1 · OR 

Explain the vario"us collision resolution te~hniques used for hashing .... 
(PTU D ""1lta 

example. ·. · . ' ec. 20o 
Ans. Hashing is a searching technique where we can c~mpute the location of the desir '1) 

record In order to retrieve (n a single access. T~e ~as,c idea of hash function is t~ 

transfonnation of the key into the corresponding location in the hash_ t~ble. A hash function 8 

can be defined as a function that takes key as input and transforms it into a hash table ine1 H 
hf t·s· . eic 

Foilowing are the most popular methods of has unc ion . • · 

1. Division Method: Table is an array of database file where the _emplo~ee details are 

stored. Chose a number m, which is larger than the number of keys K 1·8 · m 1s greater than 

the total number of records the TABLE. The number mis usually chosen to be prime numb 

of minimize the collision. The hash function H is defiried by er 

. H (K) = K (mod m) . 

Where H (K) is the hash address and here K (mod m) means the remainder when K is 

divided by m. 
2. Mid Square Method : The key K is squared. Then the hash function H is defined by 

H (K) = K2= L · 

Where L is obtained by digits from both the ends of K2 starting from left. Same number · 

of digits must be used for all of the keys. · 

e.g. 

I K 4147 3750 2103 

I K2 17199609 14062500 4422609 

I H (K) 97 62 22 

3. Folding Method: The key K is partitioned into a number of parts Kl, K2, K3 ..... Kr. 

The parts have same number of digits as the required hash address, except possibly for the 

· last part. Then the parts are added together, ignoring the last carry. That is 

H (K) = K1 + K2 + ....... + Kr . . 

H~r~ we are dealing with a hash table with index from 00 to 99, i.e. two-digit hash table. 
So we dlVlde the K numbers of two digits. · 

e.g. 

I K I 2203 7248 
/. 

12345 
K1, K2, K3 22,03 72,48 12,34,5 

I H(K) I H (2203) H (7248) = 12 + 34 + 5 
I - K1 + K2+ K3 I = 22+ 03 = 25 = 72 + 48 • 20 = 51 

sh a . 'd . . are most impossible to 
me ha . n be minimized cons, erably by introducing three tech . . 

sl:I oid bUt it cha aining bucket addressing. But In this question we Will exp:ues lywhich are open 
1:1" sin9, c ' dd 1 non one technique 
ddres addressing : In open a ress ng method, when a key is coll·,.· . . 

e. open d b f' d' iu1ng with another 
msion is resolve y m mg a nearest empty space by probing th lls 

v.eY, t':u~~ose a record R with key K h~ a hash address H (K) = h, thene wC: win rinearty 

1 (where i = o, 1, 2, .... m) locations for free space (i.e. h, h + 1 h + 2 h 
rchtl+ • , +3 .... hash 

5ea 
address). position in which a key can be stored is found by sequentily searcni all .. 

. Thfe rn the position calculated by the hash function until an C>n'\nh, celngl . t ~itionsTh' 
rtin9 ro . b' - • .. t- •1 IS ou,.... ,s 

sta bing is called hnear pro ing. 
e of pro . . S . . 

tYP O adrating Probing . uppose a record with R with key K has \he hash add H 11K) 
u · thl t· ith ress-: 

h Then instead of searching e oca ,on w ~ddress h, h + 1, h + 2 .... h + 1, we search tor 

. "' . h address h, h + 1 , h + 4, h + 9 ..... h + i2 ..... 
free has 

0 23; What is hash table? . 

Ans. Hash table are com~on data structure. ~ey ~ of an array lthe hash table) 

and a mapping (the hash function) . The hash function maps keys into hash values. \\ems 

ed in a hash table must have keys. The hash function maps \he key of an item to a hash 
stor 1 . d . d . 
· iue and that hash va ue 1s use as an in ex mto the hash table tor that item. This allow 

~:ms to be inserted and located quickly. It is the best search me1hod l'l\Joduced tor binary 

search. · 
a 24. Why we use hash table? 

Ans. Having new looked at arrays, linked list, stack, queue and trees we w\11 conclude 

the concept of hash tables. The efficiency of storage, retrteval and sorting has been discussed 

elsewhere and not dealt with in detail when discussing the ~er data structure. Now , it 

become one of the main reason for using the hash tables. 

Q 25. What is double hashing? 

Ans. Double hashing is one of the best method avai\able tof open addressing because 

· the permutations produced have many of the characteristics of randomly chosen pennutat\oos 

Double hashing uses a hash functions of the form : 

h (K, i} = [h, (K} + ih2 (K}l mod rn 

where rn is the size of hash table, h, (K) [=-K rnodm\ and ~ lK) \=Kmodm) are tw 

auxiliary hash functions. Here rn is chosen to be slightly less \han m. 

Q 26. What is rehashing? lPTU, May 201 

Ans. In rehashing we find an alternative empty \ocation by modifying the hash tunct 

and applying the modified hash function to the colliding symbol. 

Q 27. What are the varlous usls of hashing? 

Ans. The uses of hashing are asrol\ow : 

1. CD Database 

2. Drivers Licences/Insurance Cards 



stii1'19 average 111111:: ,v, 
dt-1" • The 

no 
'. g81'1 e tlf118 . 

- -:;:::==--:---------------~L~O~=l~i>~.)~D~ata~S~tr~uct~ur~e~&~Algorj ~rt1,, " 6 rB9 4 13 23 98 57 

3. Sparse Arrays 
~ ~,15ol'l· 7 26 4 

4 13 23 32 57 

4. File Signature 
. 0rt1P9 48 . 7 26 4 

4 13 23 32 · 5 

:· ~~ g,:,,:ry (Searching, Sorting) 

0 !! ; ~: ~y
2 4

~ 

7. Graphics 
~o su~~rt:1~3 

NOW so 4 13 23 32 

8. Associative Arrays 1 26 4 13 44 32 

9. Database Indexing 
5 7 26 23 

2 6 44 32 
1 

10. Caches 
~5 

7 13 2 3 L- . 44 32 

11. Sets 7 
1 3 32 44 

12. Object Representation 
5 

13. Unique Data Representation. 
rted arraY is .: 26 32 44 

...,~•---. -~ •, ,., c::.u111al ee1 to b -
. e O(N*log(N)) 

100 5 32 
100 5 98 
100 57 98 
100 57 98 
I l 

48 

100 57 98 
57 100 98 
57 98 100 

57 98 · 100 

0 28. Why hashing is needed? (PTU, Dec. 201 , 

Ans. While running collections of caching machines some limitatons are experience l) 

A common way of load balancing n cache machines is to put object O in cache machind, 

number hash (0) mod n. But this will not work if a cache ma~hine i~ added or _remov~ 1 

because n changes and every object is hashed to a new location. This can be disastrous 

since the originating content servers are flooded with requests from the cache machines 

50 so 7 13 23 
5 . k sort ? Sort the following array using quick sort method 

t IS QUIC 1 • 

Hence; consistent hashing Is needed to avoid swamping of servers. · 

Q 29. List out the different types of hashing functions ? (PTU, Dec. 2014) 

Ans. Different types of hash functions : I 
1. Division method 2. Mid square 

a. Multiplicative hash function 4. Digit folding 

_ 5. Digit analysis . 
Q 30. What Is the advantage and average efficiency of quick sort ? Apply Quick 

sort on the following data and show the contents of the array every pass : 

48 7 26 44 13 23 98 57 100 5 32 (PTU, Dec. 2014) 

Ans. Advantages : 
1. Quicksort is an in-place sort .that needs no temporary memory. 

2. Typically, quicksort is taster in practice than other 0(n log n) algorithm, because its 

inner loop can be efficiently implemented on most architectures. 

3. Quick sort can be easily parallelized due to its divide-and-conquer nature. 1 . 

4. In most real-world data, it is possible to make design choice which minimize the 

probability of requiring quadratiq time. 

5. Quick sort tends to make excellent usage of the memory hierarchy like virtual memory 

of caches. It is well suited to modern computer architectures. / 

Quick Sort efficiency : Best case situation : Assuming that the list -breaks into two 

equal halves, we have two lists of size N/2 to sort. In order tor each half to be partitioned, 

(N/2) + (N/2) = N, comparisons are made. Also assuming that each of these lists breaks into 

two equal sized sublists, _ we can assume that there will be at the most log(N) splits. This will / 

·esult In a best time estimate of O(N*log(N)) tor quick sort. · . 

W~rst case situation : 1~ the worst case, the list does not divide equally and is larger 

1 one side than the other. In this case, the splitting may go on N-1 times,. This gives a worst· 

1se time estimate of O(N2). · 

Q 31. Wh8 56 47 35 10 90 82 3 {PTU, May 2.015) 

24 rt . Refer to a .No. 4 
auick so · 

A05 • d ta is 
fhe given a 47 35 10 90 82 31 

24 -5~0 24 (56 47 35 90 82 31) 

pass 1 : ( ) 24 (56 47 35 90 82 31) 

p ss 2 . 1 O 35 31) 56 (90 82) 
a 3: 10 24 (47 

pass : 24 (35 31) 47 56 (90 82) 

Pass 4 : ~~ 24 (3 1) 35 47 56 (90 82) 

pass 5 · 4 31 35 47 56 (90 82) 

6 . ◄ o 2 
pass • 1 ) 

Pass 7 : 10 24 31 35 47 56 (82 :~ 

Pass 8: 1 O 24 31 35 47 56 82 

. 
32 

What is the advantage ~nd average efficiency ot Insertion sort 'l Sort \he 

~ d. t ing an insertion sort algorithm and show the contents of \he array 

following a a us . 

after ever~:as; : . 92 6 12 14 40 44 20 21 (PlU, Dec. 201·5 

Ans. Insertion sort : Refer to Q.No. 7 

23 7 92 6 12 14 40 44 20 21 

7 23 92 · 6 12 14 40 44 20 21 

7 23 92 6 12 14 40 

' 6 14 40 7. 23 92 12 
6 14 40 7 12 23 '92 

6 
6 
6 
6 
6 

7 
7 
7 
7 
7 

12 
12 
12 
12 
12 

14 
14 
14 
14 
14 

23 
23 
23 
20 
20 

92 
40 
40 
23 
21 

40 
92 
44 
40 
23 

44 

44 
44 
44 
44 
92 
44 
40 

20 
io 
20 
20 
20 
20 
92 
44 

21 
21 
21 
21 
21 
~1 

21 
92 



132 
.......,.. 5t,i119 

LO=ii>.> Data Structure & Algo . r ;;1(10 j-'li;I 

Q r,tlirii ·rig :3Z 
f 33. What Is Heap ? How are they represented in memory ? Perform heap s ,qr!' · 
or the following items : ' sQtt :3'2. 

44, 30, 50, 22, 60, 55, 77, 55, 10. · . (PTU, May c!Q 

Ans. Heap : A heap is a complete binary tree which leads to the idea of storing it lJ ~8) 

an array. Heap has the following properties : sirig 

(a) The value of the root is the smallest or largest value in the tree. 

(b) Every sub tree is a heap. . . . . 

A heap is represented in memory by sequential representation i.e., using linear a 

Build a heap H from the following list of numbers : rrqY. 

44, 30, 50, 22, 60, 55, 77, 55 

1. 44 

/tern= 40 

5. . 60 
/ \ 

50 44 
I\ 

22 30 

Item= 60 

6. 

2. 44 
I 

30 

/tern= 30 

60 
I\ 

· 50 55 
_ I\ i 
22 30 44 

Item= 55 

7, 

3. 50 4. 50 
I \ I \ 

30 44 30 44 
I 

22 

/tern= 50 Item= 22 

77 8. 77 

/\ /\ 
50 60 55 60 

/\ /\ /\ /\ 
22 30 44 55 ~o 30 44 55 

2£ 

Item= 77 item= 50 

Q 34. Define the criteria for selecting . a hash function. (PTU, May 2015) I 
Ans. The two principal criteria in selecting a hash function are that it should be easy 

and quick to compute and that it should achieve an e_ven distribution of the. keys that a_ ctually 

occur across the range of indice~. If we know in advance exactly what keys will occur, _then It 

· is-possible to construct has functions that will be very efficient, but generally we do not know 

in advance what keys will occur. Therefore, the usual way is for the hash function to take the 

key, chop it up, mix the pieces together in various ways, and thereby obtain an index that (like 

the pseudorandom numbers generated by computer) will be uniformly distributed over the 

·ange of indices. 
Q 35. Consider .the following numbers are stored in an array A : 

32,51,27,85,66,23, 13,57 
Apply Bubble sort algorithm to the array A and show each pass separately. 

. (PTU, May 2016) 

Ans. @ ®· 27 85 66 23 13 57 

32 ® @ as 66 23 13 57 

32 27 @@ 66 23 13 57 

pass· 2 

:3'2. 
:3'2. 

21 

27 

27 

27 

27 
27 

@ 
27 

27 

27 

c:-.,. 27 · 

pass - 3 

@ 
21 

27 
27 

Pass - 4 

® 
23 
23 

Pass - 5 

@ 
13 

Pass - 6 

z1 
z1 
z1 

@ 
@ 
32 

32. 

32 

32 
32 

@ 
@ 
32 

3·2 

32 

@) 

® 
23 

23 

@ 
® 
13 

51 

51 
51 

51 

66 

66 

66 
66 

66 

@) 66 

23 
23 

23 

23 

23 

13 
13 

@) 57 

@@ 
57 85 

13 57 

13 57 

13 57 
®@ 
51 @ 
51 . 23 

@ - 13 . 57 

@@ 57 

-13@@ 
51 23 
51 23 

13 57 66 

51 23 13 

@) 23 13 

@)@ 13 

23 -c@ ·@ 
23 13 51 

23 13 ·51 

@ 13 51 

@@ 51 

13 32 51 

13 32 

@ 32 

27 , 32 

57 

57 

57 

57 
57 

@ 27 

23 27 

32 27 51 @@ 23 13 57 So sorted array is · 
13, 23,27, 32, 51, 57,66, 85 



134 '\35 
* S.Z ~ 

. d r1astii
09 

. t are sorted. to \mp\ement Quick sort. Write the steps to sort the c3fl ,t>.11 115 
1 orithm d LO~i>~ Data Structure &. Alga ·t· 

rt hl't\ 
0 36. Consider the following numbers are stored In al) array A : s 31,52,28,84,65,24, 14,56 . . 

rtl~9 1 : . an a g . sort metho . : 
,o_ p1

9;1. wr•!~ts bY quick 
lPTU, May 2.0'\8) 0 9 elem 87 46 "thm . Refer to Q.No. 5 

Apply Bubble sort algorithm to the array A and show each pass separate! 
y. 

(PTU, May 20 let) 

110~1; zS, 6: k ~ort a\gon . . 10 1 ' au,c ta is 
Ans. Pass 1 

@) @) 28 

31 @) @) 
31 28 @) 
31 

31 

31 

31 
31 

Pass 2: 

Pass 3 

28 

28 

28 

28 
28 

@) 
28 

28 

28 

28 

28 
28 

® 
28 

28 

28 
28 

Pass 4: @ 
28 

28 

28 
Pass 5: @ 

-24 
24 

Pass 6: @ 
14 

52 

52. 

52 

52 
52 

@ 
@) 
31 

31 

31 

31 
31 

@) 
@) 
31 

31 

31 

@) 
@) 
24 
24 

@ 
@ 
14 

@ 
24 

84 65 

84 65 

@) 65 

@ @) 
65 @) 
65 

65 
65 
52 

@ 
@ 
52 

24 

24 
24 
65 

65 

@ 
@ 

52 . 24 

52 
52 
52 

24 
24 
24 

24 

24 

24 

24 

@ 
® 
14 
14 

24 

24 

24 

@ 
@ 
14 
14 

14 

@ 
@ 

24 14 

@ 14 

24 
24 

@ .@ 
14 52 

24 14 

@ · 14 

@) @ 
14 31 
14 31 

@) 31 
28 31 
28 
28 

31 
31 

52 

52 

-52 
52 

52 

52 
52 
52 
52 

14 

14 

14 

14 

14 

@ 
® 
56 
14 

14 

14 

14 

@ 
@ 
56 
56 

56 

56 

56 
·55 

56 

56 

56 
56 

56 

56 
56 

56 
56 

56 

56 

56 

56 

56 

56 

@) 
84 
56 

56 

56 

56 

56 

@ 
65 
65 

65 

65 

65 
65 

65 

6,5 

65 
65 

65 

65 
65 

65 
65 

~os• given da @ 87 46 

87 46 
1110 @, 28, ' ' lri'I (Compare 31 and 52, np swap) I · 28 ® 

(Compare 52 and 28, swap) \ pass 1 : · 
6 

17 l@ 87 46) _ . . . . 2 : 6 28 (87 . 46) 
(Compare 52 and 84, no swap) pass 

6 
17 

46 
87 · 3 : 17 28 • · 

{Compare 84 and 65; swap) pass 4 : 6 ations for heap sort. Usmg the above algolithm sort the 1o\\owing~ {Compare .84 and 24, swap) 

{Compare 84 and 14, swap) 
(Compare 84 an.d 56, swap) 

84 

84 
84 

84 

84 

84 
84 

84 

84 

84 

84 
84 

84 

84 

84 
84 

84 

84 
84 

84 
84 

pass Write ADT oper 1 6 35 17, 35- · lPTU, May 2.018) a 38
• 25, 45, ~

5
• 

1 
' ~par\son-based sorting algorithm to create a sorted anay· tor • t-1eapsort ,s a ~~tion sort family. Alt~ough somewhat slower in practice on most . ,-osis part of the ~el lemented quick.sort, ,t has the advantage ot a more ,a\Jourable list), ~

nd 
than a wen-,m~ Heapsort is an inplace algorithm, but is not a stable sort. h10es ) run t,me • . · t · 111ac se o (log n "thm : The first step is to build a heap out o the data. wor5\·~~s a two-step algor_, with removing the largest element from the heap. We insert ihe second 

st
e~ be~~s sorted array. For the first element, this would be position O ot . ""oved element into e t the heap and remove the next largest item, and insert i\ into 

ine re .. · . e reconstruc w rray. Next w ved all the ob·1ects from the heap, we ha\Je a sorted arrav. e 
the a have remo 

. · e array. Atter w~ he sorted elements by choosing a min-heap or max-heap m step one . . th . vary the direction of t 17 35 be a list of elements we can construct a tree tor these 
can 45 25 11 6, 85, , · 35, , ' ' 

\ . elements as follows : 

01234567 

\ 35 \ 45 \ 25 \ 11 \ 6 \ 85 \ H \ 35 \ 
a 



' • 
136 

LO=li>.> Data Structure & Al 

~ .t~ llis 
6 

7 

Th~s the heapified tree is constructed. Now swap root node with the last node in th 

each time and then delete the last node and insert it in the priority queue. 8 tree 
• I 

35 

I 
6 1 

Priority queue 

/ 6 / 11 / 

Priority queue . 

Swap 

137 

s \ 11117 1 
J 

Priority queue 

-:-s~\_11-::::-l 17-:7 ~' 2---ls 1_--.J\ 
Priority queue 

Priority queue 

6 j 11 I 11 I 2s I 3513s I 
Priority queue 



ID'll» Data structure & Ai90•u, T od tl,st,ln9 y ,_ L elements except possibly the last sUb "'"' . "' 
~1~3!8 ____ ~ __ .::___ ____ .;__-,---~~~-----..:....::.:::::~ rt1n9 8 ti sub arra · The procedure merges the pairs ot sub arra':fs ~YA. Which ma':f ha-ve 
✓ 

/J. 
So e eac L- eiernen~s. . o - and assign \he 

45 . 11er 111:111 * *Q d R . N m 

I I I I I I 5 I 45 I 'II 8r t y 0- T (N/2*L) ; s = 2 L an . = - s -
- s 11 17 25 35 3 . _1e°"111e arraset O: IN procedure to merge the _Q paris ot subarra"s' 

Swap Priority queue 10 1. above , · Q· ·1 '1 

85 [IJse . f r J == 1, 2, .. ... .. .. . ' . ·. . ✓5 2: Repeat O 
8 . 1 + (2·• J - 2) * L lF1nds Lower bound ot first arr \ 

~. (a) set LME.RGE (A, L, LB, A;·L, LB+ L, B, LB) . a':f . 
call 

(b) end of Loopl · 
45 l I one subarray-left?l 

( ) [00 Y 

. @ Delete it and insert in priority queue 

Finally we get priority queue as 

1 6 1 11 1 1-11 25 1. 35 1 35 1 45 1 85 1 . 
If we delete the elements of queue one by one we Will get the sorted list as 

6, 11, 17,25,35,35,45,85 . 
Q 39. Write an algorithm to implement Merge so.rt. (PTU, May 2018) 

C . If R ~ L then . 
Repeat for J = 1 , 2 , ·· · ···· R. 
set B (S + L) : = A (S + J) 
[End of Loopl · _ -
e~e: - ·- · 
Call MERGE (A, L, S + 1, A, R, L + S + 1, B, S + '\) 

_ [End of If structurel . 

4 Return · Th' I 'th -
4
: MERGE so RT (A,N) : 1s a gon m sorts the N e\ement array r.._ using an aux\Ucuy 

. . Ans. Algorithm : · 

. 1. MERGING (A, R, B, S, C) : Let A and B be . sorted ~rrays with R and S element 
respectively. This algorithm merges A and B into an array C with N = R + S elements. s 

1. [Initialize} Set NA : = 1., NB : = 1 and PTR : = 1 1 - · arraY 6 · s;t L : == 1 llnitializes t~e number of elements in the subarrays\ 

\ 

~~ Repeat steps 3 to 6 while L < N · -2 . [Compare] Repeat while NA s; R and NB s; S : If A [NA] < B [NB] then : 

(a) [Assign element from A to C] set C [PTR] : = A ~NA] 
(b) [Update pointersJset PTR: PTA+ 1 and NA:= NA+ 1 else 
(a) [Assign element from B to CJ Set C[PTR] : = B [NB] 
(b) [Update pointers] set PTA:= 'PTA+ 1 and NB : = NB+ 1 [End of if structure] 

[end of loop] • 
3. [Assign remaining elements to CJ - . 

If NA> R then 
Repeat for K = 0, 1, 2, ..... S - NB : 
Set ([PTR + KJ : = B [NB + kJ . 
[End of loop] 
Else; 
Repeat tor K = 0, 1, 2 ....... A - NA: 
Set ([PTA + k]; = A {NA + kJ 

_ [End of Loop] 
[End of if structure J 

4. Exit 

2. MERGE (A, R, LBA, S, LBB, C, LBC) : This procedure me.rges the sorted array A . 
1d B into array C. · . -

1. · ~et NA : ~ LBA, NB : = LBB, PAT : = LBC, UBA : = LBA + A' - 1 . 
UBB : = LBB + S - 1 

2. Same as above algorithm except A is replaced by UBA ands by UBB. 
3. Same as above algorithm except A is replaced by UBA ands by UBB. 
4. Return. 

3. MERGE PASS (A, N, L, B): The N element array A is composed of sorted sub arrays 

Call MERGE PASS (A, N, L, B) . 
3· Call MERGE PASS (B, N_, 2 * L, A) 
4. 
5. Set L : = 4 * L 

[End of step 2 Loop} 

6. EXIT. 
a 40. Build a heap H from the following list of numbers : 

40,65,15,48,14,50,17,22 
Ans: Creating heap 

40 

ITEM=40 
(i) ' 

lTEM=65 
(ii) 

9q 
,' \ ,• \ 

40 50 
I I 

15 48 
I 

14 

\TEM=50 
{vi) 

~5 
_: 

40 

I 
15 

\TEM=15 
(iii) 

65 

I\ 
40 .S 

I ,s 
11EM=48 

{l'I) 

65 
/\ 

40 50 
I 

17 
/\ 

14 15 

\TEM=17 
{v\\) 

□□□ 

lP'TU, May 11 

65 

/\ 
40 48 
I 

15 
I 

,. 11EM= 

65 
/ \ ' . ' 40 50 

/\ 
17 22 
/\ 

14 15 

11EM=22 
(Vli\) 

tv) 



Chapter 

5 Graph 
Contents 
Basic Terminology and Representations, Graphs search and traversal algorithms and 
complexity analysis. . . • 

,POINTS TO REMEMBER~ 

~ A graph is a non-linear data structure that consists of a collection of vertices (or nodes) 

and a collectio_n of edges, with each edge joining one vertex to another. It is represented 
as G = (V, E) where V is a set of vertices and E is a set of edges. 

~ A directed graph or digraph is a graph whose each edge is an ordered pair of vertices. 

Edges of a digraph have a direction associated With them which indicate how it may be 
traversed. 

~ A undirected graph is a graph in which there is a no direction associated with any of the 

edges. Presence of an edge connecting two nodes indicates that we can traverse in 

either direction. · 

Two vertices in a graph are said to be adjacent it there exists an edge between them. 

A path is sequence of vertices traversed by following the edges between them .. A path is 

· simple it is has no repeating vertices ~ith an exception that V0 (starting vertex in path) 

may equal Nn (last vertex). · 

~ A cycle is a simple path consisting of sequence of vertices such that the starting and 

ending vertex are the same. 

~ . A loop is a special case of cycle in which an edge begins and ends with the same vertex. 

~ In an undirected graph, the degree of a vertex is the number of edges originating from it. 

~ lndegree of a vertex in a directed graph is the number of edges entering the vertex. 

Outdegree of a vertex in a directed graph is · the number of edges leaving the vertex. 

~ A graph is said to be complete if there are edges from any vertex to all other vertices. 

ll@r' An . undirected graph is said to be ·connected if every vertex is reachable from others by 

following some path. 

:i" A graph is termed as weighted graph if all the edges in it are labeled with some weights. 

A weighted edge between two vertices. V1 and Vi that has a scalar value w associated 

with it is written as (V1, v1, W). 

r A multi graph is a graph in which these are two or more edges connecting the same 

vertices of graphs. 

140 

GraPll of the adjacency matrix provides information rega d" . 141 

~ ,he entri~S are adjacent or not. r mg Whether two vertices 

of a gr~Phted graph, if an edge with a given weight exist betw 
weIg . h . . een two Vertie 

~ in a t weight as the entry in t e weighted ad1acency matrix in t es then we 
store tha s ead of 1 as in adiacenc 

. y 
rnatrt>L . f d' t d h d' cency matnx o an un ,rec e grap , the sum of all the t . 

. ~ In a~ a. Jatwice the number of edges in. the graph. en nes of the adjacency 
rnatnx in . · 

ct·acency matrix of a directed graph, the outdegree of avert . 
~ In an a ~tries of the row corresponding to it and indegree of verte ~x IS equal to the sum 

of the et ·es .of the column corresponding to it. x is equal to the sum of 
the en n . . . 

th matrix determines whether there exists a path betwee « The pa n any two vertices or 

not. . . . 
rtion deletion and traversing are the basic operations that can be rt « Inse • . pe armed on a 

graph. . 
« The shortest path between • any two vertices of a weighted graph is the sequence of 

connected vertices so that the sum of the cost of edges that interconnect them is minimum. 

« Dijkstra's shortest path algorithm determines the shortest path from a single source 

vertex to all other vertices of a graph. 

« Floyd's shortest path algorithm determines the path with the minimum cost from every 

vertex to every other vertex. 

. « A spanning tree i_n G is an acyclic subgroup of G that includes every vertex of G and is 

connected. 
~ A minimum spanning tree is_ a spanning tree whose sum of weights of all its edges ir 

minimum. 
~ In a strongly connected graph, if there is a path from vertex U to vertex V then theri 

should be another path from vertex V to vertex U. 

~ A connected graph is biconnected if there are no verti~s whose removal dlsconnecl 

the rest of the graph. 
~ A biconnected component of a graph is a maximum set of vertices that is biconnecte 

\ QUESTION-ANSWERS \ 
? (PTU, May 201 

a 1. What is Kruskal's algorithm used for in grap~~ · itv1 tree of the gi, 
f. d' the m,mmum spann~ ·~ 

Ans. The Kruskal's algorithm is used tor m mg . . inCf'easing orde1 
th spanning tree ,n 

. graph. In kruskal's algorithm, edges are added to 8 

cost. It the edge form a cycle in the spanning, it is discarcied. (PTU, oec. 2c 

a 2. Explain representation of graph. 

Ans. A graph 'G' consists of two things : 

1 . A set 'V' of elements called nodes. 



o=1i>> Data Structure &. Al ,.. . L . . . . 90titti 
1,~4~2--- - --------~:- . t·t·ed with a unique pair of noe1e . ~ - . 'E' is ,den , , s ir, 2 . A set 'E' of edges s.t. each edge ,n . n is of two types : . 'v, denoted bye= (u, v). ·lts representat,o · d with adjacency matrix. It is a. . epresente tr, " 1. Sequential representation : It 1s r ... ~ 

f 1 if v· is adjacent to Vj 
matrix defined as a_,1 = lo: 1 

otherwise 
. t of two lists : · 2. Linked representation : It cons,s s h The structure of node list is . (a) A node list which links all the nodes of grap · · 

N NEXT ADJ 

. t · des of a node. Structure of edg (b) An edge list which links all the adJ~cen no . 8 
noa8 

is: 

I DEST LINK r I 
Q 3. Explain Depth-First Search. - · . . (PT~, ,Dec. 2006) • Ans. In Depth First Search i.e., DFS, firstly we examine starting node A. Then, We 

examine ·each node 'N' along a path P, which begins at 'A', i.e. we process a neighbourof 'A' 
and so on. After coming to a "dead end", we back track on P until we can continue alon 
another path P'. In this case, we use stack instead of queues. · g 

Q 4. Distinguish between BFS and _DFS. . (PTU, Dec. 2007) 
Ans. Breadth -First-Search (BFS) : The general idea behind a breadth first search 

beginning at a starting node A is as follows. First; we examine the starting node A: Then w~ 
examine all the neighbours of A. And so on. Naturally, we need to keep track of neighbours of 
a node and we need to guarantees that no node is processed more than once. This is 
ac_~ompli~he~ by using a queue to hold nodes that are waiting to be processed, and by 
,vr,t,ng a field STATUS which tells us the current status of any node. 

. D~pth First Sear~h (DFS) : T~e gen~ral idea a depth first search begining at a storing 
ode A is as follows : First we examine the starting node A. Then we examine each node N 
on~ a path P which begins at A ; .that is, we proceed a neighbour of A, then a neighbour ol 
neighbour of A a~d so on. Afte~ coming to a fldead end" that is to be end of the path P, we 
ck track on P untd we can continue along another path P. And so on. · 

In the nut shell results'. DFS (depth first search) is similar to BFS (breadth first search) 
ept now we use a stack instead of queue for DFS (depth f" t . · . .· irs .search). · 

Q 5. Discuss how graphs are represented in . . · . memory usmg lmked list. 

Ans. The linked repr~sentation of graph conta· tw . (PTU, May 2007) . . . · . ins o lists: • 1. A node 11st which links all the nodes of the · h . .· grap • The structure of node list is : 

143 
ADJ , 

. h"ch \inks all the adjacent nodes of a node. Stru~t 
dg

e 11st w • ure of edge list Is . ~e . . 
z. GO utiK ~ \ . 

complete graph? Write any two applications of comp\ t wtiat ar~ . e e graph. Q 6- . (PTU, Dec. 2007) . h ·s said to be complete 1f there are edges from any vertex· t 11 . 
· Alls- A graP e' of graph each vertex is adjacent to every other vertex For° a 

0th
'er such typ ' · · ~xamp e : ·rtices- In d G2 are complete graph. . . ve h G1 an ' ~~ . A . 

Complete Graph 

a 7. What is · adjacency matrix representation of a graph in memory'l · ·(PTU, Dec. 2001 
Ans. suppose G is a simple directed graph with m nodes and suppose the nodes at ' 

have been ordered adn called G
1

, G2, ...•. Gm- Then adjacency matrix A= (~i) of graph G 
the m x m matrix defined as fallows : • 

a .. = J 1.. if G is adjacent to Gj,that is, there is an edge lG.i,Gi) 
'1 . lo otherwise 

. . . lied bit matrix. or a boole such a matrix A, which contains entries of O and 1 is ca 
matrix. 

· for example, . · . · . a linear array DAT! 
Consider a graph G, suppose the nodes are stored is memory ,n . 

follows: 

DATA : X, y I z, w 
• Then we assum~ that G .= X, G2 = Y, G3 = Z., G1 = W 
The adjacency tnatrix A to G is as follows : 



. 144 

=r.~~~~1 A 1 0 0 1 

0 0 1 0 

Note that 1 's In A is equal to number of edge G 

Y..--------,,x 

LO=li>.> Data Structure & Algorithn,s 

Q s. Detine ·connected and weakly connected .graph. (PTU, May 2009) 

Ans. In mathematics and computer science, connectivity is one of the basic concepts 

of gr~ph theory. It is closely related to the theory of network flow problems. The connectivity ' 

of a graph is an important measure of its robustness as a network. 

In an undirected graph G, two vertices u and v are called connected if G _contains a path 

from u to v. Otherwise, they are called disconnected. (Recall that vertices connected by an 

edge,i.e., by path of length 1, are called adjcent.) A graph is called connected if every pair of 

distinct vertices in the graph can be connected through some path. 

A connected component is a maximal connected subgraph of G. Each vertex belongs 

to exactly one connected component, as does each edge. 

A directed· graph is called weakly connected if replacing all of its directed edges with 

undirected edges produces a connected (undirected) graph. It is strongly connected or strong 

if it contains a directed path from u and v and a directed path from v to u for every pair of 

vertices u, v. The strong components are the maximal strongly connected subgraphs. 

Q 9. Explain topological sorting on graphs. (PTU; May 2009) · I . 

Ans. In graph theory, a topological sort or topological ordering of a directed acyclic 

graph (DAG) is a linear ordering of its nodes in which each node comes before all nodes to 

which it has outbound edges. Every DAG has one or more topological sorts. 

· More formally,define the partial order relation R over the nodes of the DAG such that 

xRy if and only if there is a directed path from x to y. Then, a topological sort is a linear 

· extension of this partial order, that is, a total order compatible witf the pa.rtial order . . 

Q 10. What is directed graph? 
(PTU, Dec. 2009) 

· Ans. A directed graph G is defined as an ordered path where, V is a set of vertices and 

he ordered pairs in E are called edges on V. A directed graph can be represented geometrically 

s a set of marked points (called vertices) V with a set of arrows (called edges) E between 

':f irs of points. (or vertices) so that there is at most one arrow from one vertex to another 1 · 

•r:fex. For example following figure shows a directed graph, where . 
1 

0) 
d . ? 

h is represente m memory . lPTU 

0 
11, t-10W ~rap resented in memory by a linked representation also called' Ma~ 2010) 

Ph Is rep . f h h 1 . ' an ad1acancy 

A115• Gra all the vertices o t e grap n a hst and then each ad· . 

r . t we store . T . 1acent vertices 

11.1re- firs d sing linked list node. he terminal vertex of an edge is t . 

51roc sente u d' . ·t· 1 rt . s ored m a 

be repre d l'nked to a correspon mg m1 1a ve ex in the list. For example t 11 . 

will de an 1 
• 1. k . . , o owing 

ot0re no f 1 can be represent_ed using in ed hst as m fig. 2. 

strl.l d graph of 1g. 

diree'8
 · 

1 1 

2 

3 

4 

5 

Fig. 1 
Fig. 2 

0 12. What are various applications of graphs? ~rite an algorithm for traversal 

h 
. 

{PTU, May 2004) 

In a grap • 
. 

Ans. Various applications of graphs include : 

1. These are used to distinguish between chemical compounds having same molecular 

but difference structure formula. · . ,, · 

2. Graphs are used to study the network of Internet, i.~. Worldwide web. Hence, these 

are used to establish connection between different system. 

3. Graphs are used to implement a circuit on a circuit board. . . 

. 1. 
ices and commumcation 

4. Graphs are also used to implement transporta 10n serv . · 

networks. 
; . either Breadth First 

Traversal in a graph : A graph can be traversed in two ways · 

Search (BFS) or Depth First Search. .• . 1 
a starting node A . 

. 1 • BFS : This algorithm executes a BFS on a graph G beginning a 

1. Initialize all nodes to ready state (STATUS = 1 ). . . to waiting state (STATU! 

2· Put the starting node 'A' in QUEUE and change its status · 

= 2). 

· 3· Repeat steps 4 and 5 until queue is empty. . · · and change the status of N 

4· Remove the front node N of QUEUE Process N 

Processed state (STATUS = 3). 



146 

5 
. . LO=ti>~ Data Structure & Al • . 

. · Add to rear of QUEUE all th . · 9or1tt-i · 
(STATUS = 1) & . ~ neighbours of N that are in steady state. Ills 

6 _ Exit. · ' change their status to waiting state (STATUS= 2). 

2 - Depth First Search . Th· 1 . · 
starting node 'A'. . . is a gonthm-executes a DFS on a graph G beginnin 

-1 1 ·r ,. . 9 at 
. ni ia ize all no<:fes to ready state (STATUS= 1). 

2. Push starting node 'A' t s.,. · 
2

)_ .on o ,ACK and change its status to waiting state (STATUs =::: 

3. ;epeat steps 4 and 5 until STACK is empty. 
4 · (S°_f the top node N of STACK. Process N and change its status to processed 

,ATUS = 3). . state 
5 - Push onto ?TACK all neighbours of N that are still in ready state (STATUS= 

change their status to waiting state· (STATUS = 2). . 
1

) ano 
6. Exit. -

_a 13. How minimal spanning tree tor a graph is genera.ted? · Explain with a 
algor,thm. (PTU D n 

A . . . · . · , ec. 2010) 
. . ns_- To obtain the minimum spanning tree for~ graph, J.B Kruskal developed 

tlgonthm m 1956 known as Krusl<:al's algorithm. This algorithm builds a minimum span .an 
. b dd" d . nrng 
ee Y a mg one e . ge at a time to a subgraph. Each time an edge with the lowest cost is 
hosen such that it does not create a cycle with the edges already chosen if it does, we reject 
,at edge. This process of adding edges continues until (n - 1) edges are added to the n 
~rtices spanning_ tree. If (n - 1) edges don't from a cycle then the resulting spanning tree is 

e minimum spanning tree. 
Kruskells Algorithm is as follow : 
Step 1. Sort the edges of the graph is ascending order in accordance to thei_r weight. 
Step 2. Select the edge of least weight and-add it to the tree which is initially empty. 
Step 3. Select the edges not previously selected, the edge of the least weight that does 

form · a cycle together wit~ the edges already included. Add this edge into the tree. 
Step 4. Repeat step 3 until the tree contains n - 1 edges or all the edges are exhausted. 

If the tree so generated contains (n - 1) edges than this tree is the minimum spanning 

. otherwise no spanning tree is possible for the graph. 

Q 14. Apply Depth First Search (DFS) to following algo. (PTU, Dec. 2007) 

A 

G 
H 
K 

, ,K 

D 
K,F 
K . 
K,D,G,H 
E,K 
D,H 
E,F 
B ------

Initial push G into ~tack as follows : 

(a) STACK; G 

· nd print top element G and then push onto the stack all the n'""hbou 
(b) pop a . . W'lj'' rsofK 

as follows: . . 
Print G: STACK D, H 

(c) Pop and print top element H and then push onto the stack all the neighbours of H 

-as follows: · • · 
Print H : ST ACK D, E, F 

(d) Pop and print the top element F and then push onto stack all neiglbouis of Fas 

follows : 
Print F: STACK D, E, K . . · ,.., all -w.tv,,..,,. of K as 

d 
. t the top element K and then push onto sta""" '..,~..,.,...w 

. (e) Pop an pnn . · . · 

follows : 

Print K: STACK D, E, B . tostackalltheneij1bOU!SotBas 
(f) Pop and print the top element B and then push on . . 

follows: _ 

Print B : STACK D, E t stack all the neiglbOUIS ot Ea: 

. (g) Pop and print the top e\,ement E and push on o 

follows : 

Print E: STACK D h into stack 
(h) Pop and print top element Kand pus . . .. now cornple 

K rt·ng at G Js 
Print P: STAG · h of G sta 1 

. . depth for searc , 
The stack is now e~pty • s~ 

th
e as follows : 

Accordingly now nodes will be printed ,. 

G, H, ·F; K, B, E, D harable form G. 
h. ch are reac 

are precisely the nodes w 1 



T 
Q 15 W .1 

LO"li>> Data Structure &. Algan'-

• n e the applic t· • 

1 ... ,rn 

Ans. Depth-First Trav a ion~ of depth_ first trayersal of a graph. (PTU, May 20 s 

of the tree si·nc . ersal • A depth-first traversal of a tree always starts at th 09) 

· e a graph has no t 
. e ro 

Vertex at Which to be . ro~ ,when we do a depth-first traversal, we must speci 01 

Vis:ts the subt gin. A depth-first traversal of a tree visits a node and then rec ~ 1he 

rees of that nod s · -1 

urs1vei 

148 

then recursive! • . . e. imi arly, depth'-first traversal of a graph visits a vertex Y 

contain cy I y v1s1ts all the vertices adjacent to that node. The catch is that the graph anc:1 

Proble . c es, but tho traversal must visit every vertex at most once The· solution t may 

suffer : ,sf to kee~ ~r~ck of the nodes that have been visited, so that th~ traversal do o the 

8 ate of 1nf1rnte recursion. · 
es not 

For examp!o,fig. Illustrates tho depth-first traversal of the directed graph G s~ ~---

frcm vertex c. The depth-first traver~al vis;t;:; the nodes in the order 
1 .a. ·· -~ 

c.a.b.d. 

Applications : Algorithms where DFS is used : 

□ Finding connected components. 
7 

□ Topological sorting. 

□ Finding 2- (edge or vertex)-connected components. 

□ Finding strongly connected components. 

□ Solving puzzles with only one solution, such as mazes. (DFS can be adapted to find 

all solutions to a maze by only including nodes on the current path in the visitede 

set.) 

Q 16. Explain linked representation of graphs. (PTU, Dec. 2004) · 

Ans. The linked representation of graph contains two lists : 

1. Node list : A node list links all the nodes of graph. The structure of node list is : 

I NODE / . NEXT ADJ 

Here, NODE will be the name or key value of node, NEXT will be a pointer to the. next 

:1e in the list NODE and ADJ will be a pointer t~ 1st element in adjacency list of node, 

ich is maintained in list EDGE. The shaded area fndicates that there may •be other 

,rmation in the record, such as in· degree and out degree of node, the STATUS of node, 

I so on. 

n edge u~-

ost: A . 

G~pl'l isct9e 0EST LINK 

i-
. in the \ist NODE ot destination or terminal node 

the \ocat,on · · · · ,. d · h d · 

.11 point to h dges with the same 1rnt1a no e, 1.e., t e no es m 

r:::51 ""' ether t e e 
.,, • 

. 1d Di;;. will \inl< tog indicates that there may be o\he, \ntormat,on. 

-rtie fie ·aid 1,..1Nt< . he shaded area . 

-r11e 11 ncY ust. T . hm for shortest paths. lPTU, N\ay 2005) 

edge- djace · ll'S algont 
s · •t t· d 

~f sartle a •
0 

warshe h with •m' nodes v 1, v 2 , ..••. , vm. uppose, _we wam o m 

t'16 
17. e.:,cplal a directed grap f e 'm' square matrices (mxm) P 0 to Pm as tol\ows: 

o t,et •G' b8 h •G'. First, we de ,n 

p,.riS· .)(, of graP 

Patl1 r,1atn 
th from v· to vi which doen' \ use 

u,e . simple pa , 

1 anY other no e . . 

Pi< li, i1 :::: otherwise · 

\ 

if there ,s d s except passing v1 to VK . 

0 . dge from v1 to v1 which doesn't use any other node 

. . =- 1 , if there ,s an e . 
. . . 

It means Po (1, 11 . . 
. 

· pt possibly v1 .f ne of fo\\owing 2 cases occur: 

elCce . . 1 can occur, o 
\ 

PK (1, 11 =- . to v which doesn't use any other node except on Y 

. a simple path from v, I · · · . 

1. There IS i.e. PK-1 li, n ~ 1. . . . . . h 

v1 ····· VK-1, . . d a simple path from v· to vK, where each pa~ 

ere is a simple path from ei to vi a~ I . . 

2. Th y· nodes except possibly v1 •···· vK-1· 

doesn't use an 

p li, n :::: 1 or (PK li, K1 and PK~1 lK, m 

Accordingly, t'he elements of matrix PK can be obtained by 

. PK li, n = PK-1 li, n v lPK.:.1 u. Kl" PK-1 lK, m 

~here we use logical operations of" (AND) and V (OR). 

a 18. Write Warshall's algorithm tor shortest path. 
{PlU, Dec. 20 

Ans. Warshell's algorithm . . . . . · b its ad\acency ma\1 

A directed graph 'G' with 'M' nodes 1s mamtamed m memory Y - . 

Thus algorithm finds the path matrix 'P' of gr~ph 'G' · 

1. Repeat for\, J = 1, 2, ..... M 

If All, J1 = 0, then : 

set Pl\, J1 = o.: 
ELSE: 

Set Pl\, J1= 1 

~ 

' ! 
I 



160 
LO=ti>> Data Stru · ~ • ;:~ 

..:..::.::_ ____________ -,-------.:--:-. --=..::::.: cture~ ~ 

2 - Repeat steps ·3 and 4 for K = 1, 2, ····· M · A.Igo~ 

3 - Repeat step 4 for I= 1, 2, ... .. M 
~ GraP

11

7
_ 

4- Repeat for J = 1, 2, ... .. M 

f::=: 7 
Q : F,F,C, B,D, G E 

_ 7 
0: 0, A, A, A, F, B, 'G 

R - 8 
Q : A, F, C, B, D G E J 

. Set P [I, JJ = p [I, JJ V (P (I, K) 11 P (K, J)) 

5. Exit. 

Q 19. Apply Breadth First Search (BFS) on following graphs. 

Ans. 

Ans. Adjacancy list : 

A: F, C, B 

B:G, C 
·c: F 
D:c 
E: D, C, J 

F:D 

G:C, E 

J :D, K 

K:E, G 

1. F: 1 

R=1 
2. F:2 . 

R=4 
3. · F ~ 3 

R=S 
F=4 
R=S 
F=S 
R=6 
F=6 
R=6 

OUEUE:A 

0 :~ 

Q : A, B, C, B 

0: ~. A, A, A 

Q : A, F, C, B, D 

0: 0, A A A F 
I I I 

0:A, F CB o 
I I I 

0:0FAAF 

. 0 ·: A, F, C, B, D, G 

0 : 0, A, A, A, F, B 

Q : A, F, C, B, D, G 

O : 0, A, A, A, F, 8 

A 

( F== O O A ' ' ' 

B' 8 
: , , A, A, F B G E 

R:::: . I I I 

bacK trace from J, using any origin. To find P T 

v,Je noW B ~ A . . hus, 

1:~G~ 
J ~ ·red path P. 
IS reQUI 

u w graphs are represented in memory? W ·t 

20 .--,o 
· n ea pr 

• Q Ill. the graph. 
ocedure to delete a 

110de fro There are two standard ways of maintaining a graph G . lPl'U, May 2008) 

Ans. t t· f G . b in 11\ernory ' 

sequential represen a ,on o . ' ,s y means of its adjacenc rn . o, a computer. 

1 · . other way is called the linked representation ot G . by atnx. 

2. The 
, is 'i means ot linked list ol 

·ghbours. . 
,,e1 d·acency Matrix : 

· J\ J ose G is a simple directed graph with m nodes and sup 

supp 
Th . ' pose the nodes ot G h 

ordered and are calle.d v1' v2, .... Vm. en ad1acency matrix A= la•-~ ot . a1Je 

been atrix defined as follows : 
'1 \he graph in G is 

the rn x nm 
. 

{

1 if vi is adjacent to vi, that is, it ther~ 

aii = 
o is an edge ( vii vi) otherwise 

such a matrix A, which confains entries of any O and 1 is called a bit matrix or boolean 

matrix. 
PATH Matrix: 

Let G be a simple directed graph With m nodes v1, v2, . ... . vm. ihe path matrix or 

reachability matrix of G is the m-square matrix P = (Pii) defined as follows .: 

P-~ = {1 If there is a path from vi to vi 

11 o otherwise 

A procedure to delete a node from the graph as follows : 

DELETE (INFO, LINK, START, AVAIL; ITEM, FLAG) . . c: 

This algorithm delete the first node in the list containing ITEM or sets FlAG = Ft>.L~ 

when ITEM does not appear in the list. , · · · : t 

Step ' : [List Emptyl : It START = NULL then set FL.AG = FALSE and re um. 

Step 2 : [ITEM in the first nodel If INFO lSTART1 = ITEM then 

Set PTA= ST ART, START = LINK lSTART1 

LINK [PTRl= AVAIL, AVAIL= PTR 

FLAG = TRUE and return 

[end of if structurel 



. ~ 

152 i.o=ii>.> Data Structure & Al , 
. . . ~~ 

Step 3: E START [initializes pointers~1
1111 
rii~s \ 

Set PTR = LINK [STARTI and SAV = 11 
-.....::: 

Step 4: Repeat steps 5 and 6 while PTR ~ NULL 
It INFO [PTR] = ITEM then VAIL . I Step 5: 
Set LINK [SAVE] = LINK [PTR], LINK [PTR] = A . 
AVAIL= PTR, FLAG= TRUE and return 
[END of if structure] . · . 
Set SAVE= PTR an<;f PTR = LINK [PTR] [updates pointers] Step 6 :. 

Step 7: . 
[step of step 4 loop] · 
Set FLAG = FALSE and return. 

Q 21. Explain ·the Warshall's algorithm for finding the · path in graph. 
.·· . . . . . (PTU, Dec. 2008) 

Ans. Let G be a directed graph with m,. nodes G1, G2, Gn suppose we want to find the 
,ath matrix P of grapli G. · . . 

Warshall gave algorithm for this purpose that is much more efficient than calculattn - . 9 
,ewers of adjacency matrix. 

According ·the elements of matrix Pk can be obtained by 
Pk [i, j] = pk_1 [i j] " [Pk-1 [(i k] " Pk-1 (k,j}] . . . . . I 

Warshall Algorithm : A directed graph G with M nodes 1s maintained memory by it& 
djacency matrix A. This algorithm finds the boolean path matrix P of graph G. 
- Step 1. Repeat for I, J = 1; 2, ...... M [Initializing P] 

If A [I, J] = 0 then set P [I, J] = 0 

Else set P [I, JJ = 1 
[End of loop) 

Step_ 2. Repeat step 3 and 4 for K = 1, 2, ..... ~M [Updates P] 

Step 3. Repeat step 4 for I = 1, 2, .... M. 
Step ·4. Repeat for J = 1, 2, ..... M 

Set p [I, JJ = P [I, JJ V (P [I, KJ" P [K, J]) 

[End of _loop] 
[End of step 3 loop] 
[End of step 2 loop] 

Step 5 • . Exit. 

Q 22. Discuss the Dijkstra's algorithm for finding the shortest paths from a source 
all other vertices in a directed graph. What is its time complexity? (PTU, May 2oo9) 
. Ans. Algorithm : In graph theory, the shortest path problem is the problem of finding 

8 

h between two vertices (or node) such that the sum of the weights of its constituent edges 
ninimized. An example is finding the quickest way to get from one location to another on ~ 
d map; in this case, the vertices represent locations and the edges represent segments 

0 

:f and are weighted by the time needed to travel that segment. • 59 
Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 

19 
' 

Graph,--:;:;:--~~~~;;iv~~;-~~~~~;i;:;;~~~=~~------..'.!~ :=-. h search algorithm that solves the single-source sh 153 . a grap h - ortest path probl 1s_ negative edge pat costs, producing a shortest path t . em for a graph 
with non ·uting An equivalent algorithm was developed by. Ed ree. This algorithm is otten 

ed~n ro · · ward F Moo · · us ·· . · t's call the node we are starting with an initial nOde. Let . · re •n 1957 
. Le . ·t· I d t ·t o··k a distance of a nod y di$'tance from the m1 1a no e o 1 . 11 stra's algorithm will assi n . . . · e . be t':i..ies and will try to improve them ~tep-by-step. g some Initial distance 

v 
1 Assign to every node a distance value. Set it to zero for 

O 
• .• 

· infinity for all other nodes. ur initial node and to 
Mark all nodes as unvisited. Set initial node as current. 2

· For current node,consider all its unvisited neighbours and cal 1 . . 
3. . F -. · cu ate their distance 

(from the initial node). or example, 1f current node (A) has d. •~ 
. . . h h . IS«ance of 6, and an 

edge connect'.ng _it wit ~no
1 
t er hnode (B) 1s ~• the distance to 8 through A will be 

6 + 2 = 8 . If this distance 1s ess t an the previously recorded distance (' . . 
.• . . . I d ) . lnfinitly In the beginning, zero for the 1rnt1a no e , overwrite the distance. 

4 When we are done. considering all neighbours of the curren·t nod k . • . · e, mar 1t a:; 
visited. A visited node will not be checked ever again; its distance recorded now is 
final and minimal. 

5 _ Set the unvisited node with the smallest distance (from the initial node) as \he next 
"current node" and continue from step 3. 

complexiJ.y of Dijkstra's Algorithm : With adjacency matrix representation, the running 
lime is o (n2). By using an adjacency list representation and a partially order tree data structure 
for organizing the set V- S, the complexity can be shown to be 

0 (i.; log n) 
where e is the number of edges and n is the number of vertices in the graph. 

Q 23. How graph is represented in memory? (Pl1J, May 2011) 
Ans. · It is possible to represent graphs in computer memory with a variety ot cifterent 

data structures. One strategy is to use an dimensional array in which the row and column 
headers represent different vertices in the graph. A one way edge between for example, 
vertex one and there is denoted by a positive value in array position (1. 3). Another method 
for r,epresenting graphs is as a more complicated linked list structure. Each vertex in the 
graph is a node in a master linked list. Another linked list emantes from each vertex node and 
denotes the vertices directly adjacent to a given source vertex. This method called an adjacenC'j 

. list. _ -

0 24. Explain the· following : 
(a) Depth first search. 
(b) Breadth first search. . (PTU, May 2011, 201 0 
Ans. (a) Depth-First Search : The general idea depth-first search beginning a star.:n 

ll~)do A is f II . 
1 

as O ows. First we examine the starting node A. Then we examine each node 
aa ong 8 Path P Which begins at A · that is we process a neighbour of A1 then a neighbour 

neighbo f · ' ur O A and so on. After coming to a "dead end". that is to the end of the path P, \ 



154 --
LO=ti>~ Data Structure & Algorith 

backtrack on P until we can continue along another, path P'. And so on (This alg ~ 
s· ·, t th · · onthrn · 

1m1 a~ o e ,n order tr:3versa/ of a binary ~ree, _and the algorithm is also similar to the Is 
one might travel throug~ amaze); The algorithm ,s very STATUS is used to tell us the array 
status of a node. The algorithm follows : current 

Algorithm : This algorithm executes a depth first search on a graph of be • . 
starting node A · · ginning at a 

1. Initialize all nodes to the ready state (STATUS = 1). 

2. Push the starting node A onto STACK and change its status to th · • 
(ST A TUS = 2). . · e wa,t,ng state 

3. Repeat steps 4 and 5 until STACK is empty. 

4. Pop the top node N of ST ACK. Process N and change its status to the pro 
state (STATUS= 3). . · cessed 

5. Push onto STACK all the neighbours of_N that are still in the ready state (ST~TUS-

1) and change their status to the waiting state (STATUS= 2). -

[End of the step 3 loop] 
6. Exit. 

~b) Breadt~ First ~earch ~ The genera/ idea behind a breadth-fir~t search beginning at 

a starting node A 1s as follows. First we examine the starting node A. Then we examine all the 

neighbours of A. Then we examine all the neighbours of the neighbors of A and so on. 

Naturally, we need to keep track of the neigbours of a node, and we need to guarantee that 

10 node is processed, and by using a field STATUS which tells us the current status as any 

rode. The algorithm follows. 
Algorithm A : This algorithm executes a breadth first search on a graph a beginning at 

starting node A. 
1. Initialize all nodes to the ready state (STATUS= 1). 

2. Put the starting node A in queue and change its status to the waiting state (STATUS 

= 2). 
3. Repeat steps 4 and 5 until queue is empty : 

4. Remove the front node N of queue. Process N and change the statµs of N to the 

processed a state (STATUS= 3). 
5. Add to the rear of QUEUE all the neighbors of N that are in the state (STATUS= 2) 

[End of step 3 loop] 

6. Exit. 
d . ? 

Q 25. Define data structures graph. How they are represente m memory• 
. (PTU, May 2019 ; Dec. 2007) 

OR 
What is graph? How they are different from trees? Describe in brief the various 

ods used to re~resent graphs in memory. (PTU, Dec. 2012J 
Ans. A graph is an abstract data structure that is meant to implement the graph an 

graph concepts from mathematics. . s 

\ .graph data structure consists of a finite (and possibly mutable) set of o~dered pair ' 

rt. A · mathematics an edge 
edges or arcs, of certain entities called nodes or ve ices. s in • 

' 

~ l 
Graph ~.n-:-t -:::0:r :g:o~f;;:;ro::m~x;.t~o~y~.-=Tnh~e~n~o~d~e;s~m;a:y~be::p:art=-o:--f th------- 155 

,,) is said to _Pt.
0

~ represented by integer indices or references e graph structure, or may 
()(, I I entI ,e I . . 

. 0,cterna d ta structure may a so associate to each edge som 
pe A graph a numeric attribute (cost, capacity, length etc) e edge value, such as a 

bel or a ' .. 
,riboliC la • A tree is just a restricted form a graph. Tree ha . . 

sY Diff~renc; donot c~ntain cycles. They fit within the category 
0
;~_d,rection (pa~enttchild 

,ationshlP) an t ees are DAGs with the restriction that a child can ,r~cted Acyclic graphs 

(
roer a oAG). so rally search breadth first or depth first. The same ap 

0

1.n Y have one parent. 
e gener P 1es to tree 9 hs 

Graphs ar 
I 

and can be used to model an enormous amount of things. rap are 

verY usefu tat,·ons : Different data _structures for the representation f 
Aepresen •. . o graphs are used 

in practice : . ncy list : Verti~es are stored as records or objects and 
• AdJace . h ' d ' every vertex stores 

. t f adJ·acent vertices. T rs ata structure allows to store add·ti 
a 1,s o I onal data on the 
vertices. . 

.·denee list : Vertrees and edges are stored as records or obJ·ects E 
• 1nc1 . . . ach vertex 

tores its incident edges, and each edge stores its incident vertices Th' da 
s . dd't' I d t · . . IS ta 
structure allows to store a · .' rona . a a on ~e~Ices and edges. . · 

Ad·acency matrix : A two-d1mensIonal matnx, rn which the rows repres t 
• J . . . . en source 

vertices and columns represent destrnat1on vertices. Data on edges and vertices 

must be stored externally. Only the cost for one edge can be stored between each 

pair of vertices._ . . . . 
• Incidence matrix : A two-d1mens1onal Boolean matnx, in which the rows represent 

the vertices and columns represent the edges. The entries indicate whether the 

vertex at a row is incident to the edge at a column. 

a 26. What do you mean by path matrix? (PTU, Dec. 2011) 

Ans. Let G be a simple directed graph with m nodes, v1, v2, ..... vm. The path matrix or 

reachability matrix of G is the m-square matrix defined as follows : 

p .. = {1 there is path from vi to vi 

'1 O otherwise 

Suppose there is path from v1 to. v1• Then there must be simple path from vI to v1 when 

v11 =vi.Since, G has m nodes, such a simple path must have length m-1 or less, or such a 

· cycle must have length . m or less. This means there is no zero ij entry in the matrix Bm, 

defined at the end of preceding subse.ction. 

Q 27. What is a degree of a graph? 

Ans. In graph theory, the degree of a 

~e~tex of a graph is the number of edges 

incident to the vertex, with loops counted twice. 

Maximum degree is s. 

(PTU, May 2013} 

0 

--



156 · LO"li>.> Data Structure & Afgorith 
rns 

Q 28. What is meant by strongly connected in ':' graph ? (PTU, Dec. ~ 

Ans. An undirecte_i:1 graph is connected, if there 1s ~ pa!h v
2 

l 
from everyvertex to every other vertex. A directed graph with this 

property is called strohgly connected. 
A directed graph is said to be strongly connected if every 

pair of distinct vertices Vi, Vj, are connected. Thus if there exists a 

directed path from vi _ to vj then there a/so exists a directed path 

from vj and vi. 
A strongly connected graph 

Q 29. Discuss Depth First Search traversing techniques for graphs with the help 

of suitable example. Write program for the same. (PTU, Dec. 201 6) 

Ans. Depth First Search traversing technique : Refer to Q.No. 14 & 24{a) 

int a[20]{20], reach[20J,n; 
void dfs(int v) 
{ 
inti; 

- reach[vJ = 1; 
for (i = i; i < = n; i++) 
if (a[v][i] && !reach[i]) 
{ 

. · printf("n% d ➔ %d", v, i); 
dfs(i); 
} . 

}. 
void main() 
{ 
int i, j, Count = O; 
clrscr( ); 
printf("n Enter number of vertices:"); 
scant ("%d",&n); · 

for (i = 1, i<=n, i++) 
{ 
reach[i] = O; 
for lj = 1; j < =n; j++) 
a [i][j] = O; 

~ri~tf("n Enter the adjacency matrix : n"); 

for (i = 1; i < = n:; i++) 
for lj = 1; j < = n j ++ ) 
scanf("%d", &a[i][j]); 

dfs(1); 
printf("n"); 
for(i = 1; i < = n ; i++) 

'(reach [i]) 

• I 

Pt, . 
6(11 nt-l'·h 

cou d")· 
} t -:::: n) . connecte , 

0 un - ph ,s 
if(C ("l'I Gra _. d")· 
printf . . . not connecte ' 
e,se Graph ,s 

. tf("n 
pnn ti( ); se a graph using Depth First search. 
getc · Algorithm to t~aver . (PTU, May 201'8) 

} 30 Write an th first search on a graph G beginning at a starting node A. 
a · utes a dep 

•thrn exec d state (ST A TUS = 1) 
AflS• Thi~ algo~ nodes to the reasf ACK and change its status to the waiting state (STATUS= 

1nitial1ze a rt·ng node A onto . 
1 . . hthesta, 
2. pus · ·until STACK is empty. . · -

2) t steps 4 and 5 TACK Process N and change its status to the processed 

3 Repea . ode N of S · . . 
. the top n . . 

4. pop (STATUS = 3 ) . hbours of N that are still in the ready state (STATUS= 
stat_e CK all the ne1g 1 

h onto STA . t the waiting state (STATUS= 2) lEnd of step 3 \oop 
5. pus h nge their status o . 

1) and c a • • _ 

· Exit. h ·tree by considering the followmg eight numbers. 
~ 31 • Make a binary se;r~2 

(PTU, May 201 

50, 24, 38, 24, 67' 40, 6 ' . . 

Ans . 

a 32. Consider the directed Graph G. 

(!~ Fi~d indegree and outdegree of each node. 
(~~~ Fmd number of simple paths. 
(111) Is there any source or sink ? 
Ans (i) F" . • · 
lnd~gree ind indegree and outdegree of each node. 

V1 == 1 

(PTU, Mi 



~v2 ::::T1 
------~L~O~i>~~ D~t ~~ ·. TEST PAPERS . v:: 3 a a Structure&.A1 . _,rpaper mo DEL 

V4 :::: 2 9orithnis rv1ode1fe:r• i)) . . 

158 159 

Outdegr~! :::: 
1 

. 1-0=I (Unsolved) 

• V1::::2 
--=====~~;;;~~;~;~~;~-----

V2 :::: 3 
MODEL TEST PAPER - 1 I 

V3 :::: 1 tL()=ri>. ) -
V4::::0 

I.,.::.; 

· Vs :::: 2 · didates : 

g!> Fi,nd number of simple paths ctions to canpulsOl'Y· . B 

imp e paths are : 1,,strll . A is corn . ns frorn section • 
V . secuon r questio . C 

1 ➔ Vs ➔ V4 1. pt anY tou f ns frorn section . 

V2 ➔ ¼ Artern two ques 10 

V2 ➔- V3 ; : Attempt anY SECTION - A 
V3 ➔ Vs ➔ ¼ 

... Vs ➔ ¼ 
(111) Is there .any source or . k 

V . sm 
4 in sink 

Q 33. What is undirected graph ? 

Ans. An undirected graph is · · . (Pru 

Where all the edges are bidirectionar1h r.e._, a set of objects that are conn~ct~:~y 2019) 

_graph is sometimes called an undire~te~ un~rrected graph is sometimes called an un~~ether, 

in a direction is called a directed graph ne work. In contrast a graph where the edge;ect~d 

Q 34. Write the procedure to im. I . Point 

;~:-t :~~:~:oa~i:eisn
0
thde p~ocedu~ ~::::;,~~e~~Jt~~e;~j::~:~atrix~PTU, May 2019) 

es rn our graph*/ 
! arr~y:-nodes = $nonDirected Graph-> get Nodes . ' 

I T~rs rs where will save the adj. matrix *I ( ), 
$ad1-matrix = array ( ); 

I* Reset the matrix to all 'O' s */ 

for each ($nodes_names as $row){ . 

for each ($nodes_names as $col){ 

$adj_matrix [$row] [$col] = o· 
} ' 
} 

I* Now build the adj.matrix *I 
for each ($array_nodes as $nd){ 

$row= $nd -> getData ( ); 

$neighbours= $nd -> getNeighbours ( ); 

for each ($neighbours as $neighbour) 
{ 
$col = $neighbour -> getdata ( ) ; 

$adj_matrix [$row] [$col] = 1; 
}} 

□□□ 

Q1, 

. algorithm, 
(a) Define . tween stack and queue. 

b Distinguish be rious operations on stack ? 

( )) What are the va s ? How are they implemented ? 
(c • ·ty queue . 

hat are pnon . 
(d) W . double link list? 
(e) What is · d for garbage collection ? · 

t ·s the nee . ? 
(f) Wha I presented in memory using arrays . 

are trees re 
(g) 11ow . ? How heaps are implemented? 

What 1s a heap · . . 
(h) . ymptotic rotation ? Mention its types. 
(i) What 1s an as . 
(j) What is an AVL tree. 

SECTION-B 

t · the complexity of an algorithm ? Also explain time space trade off. 
a 2_ (a) Wha 1s . h 

(b) Write an algorithm for Binary se~rc . 

a 3. 

04; 
Q 5. 

Consider the following in fix expression : 

(A+ Bx D) t (E - F) . 

Wrjte the expression and convert into the equivalent post fix expression. 

Write an algorithm to insert new node at the end of a Double linked list. 

What is quick sort ? Sort the following array using quick sort method 

24, 56, 47, 35, 10, 90, 82, 31. 

a 6. What is adjacency matrix representation of a graph in memory ? 

Q 7. 
Q 8. 

·Q 9. 

SECTION-C 

What is Data Structures? What are different data structures operations . 

What are the various operations possible on a sinG1~, link list ? Explain with the diagrams. 

Sort the following list of elements using Bubble Sort : 
98, 89, 44, 7, 5, 35, 12, 100, 2, 57 

What is its complexity ? 



~ 
_/ 

160 LO=li>.> Data Structure & Algorithrns 

I LO=li>~ MODEL TEST PAPER - 2 1 
Instructions to candidates : 
1 . Section A is compulsory. 
2. Attempt any four questions from section B. 
3 . Attempt any two questions from section C. 

SECTION - -A -
a 1. (a) Why Complexity of linear search is of the order of O (n) ? 

( b) What is under flow? 
( c) What is traversing? Write an algorithm for traversing a link list? 
( d) What is a spanning tree ? 
(e) Define hash function. 
(f) Distinguish betwe-en BFS and DFS. 
(g) What is time space trade off?-
(h) What is a top pointer of stack. 
(i) What is degree of a graph ? 

_ (j) Construct the binary tree for the following expression. 
(2x - 3z + 5) (3x - y + 8) 

SECTION- B 
Q 2. Write a program for implementing stack using arrays. 

Q 3. Write suitable routines to perform insertion and d_eletion operations in a linked list. 
Q 4. Write short notes on : 

(a) 8-Trees 

(b) AVL search Trees 

(c) M-Way search Trees 

Q 5. Sort the following list of numbers. 

52, 1, 27, 85, 66, 23, 13, 57 
Using any efficient sorting algorithm. 

Q 6. Explain the various collision resolution techniques used for hashing with example. · 

SECTION-C 
Q 7. Explain various types of queues with examples and write an algorithm to impleme 

circular queue. 

Q 8. What are the various operations possible on a singly link list ? Explain with the diagrarr 

Q 9. Write an algorithm for preorder, inorder and postorder traversal in a tree. 

□□□ 



{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }



