Chapter -

Int
] s

asic Terminologies : P

Insertion deﬁal:)ig:st' Elementary Data Organizations, Data Structuré Opefﬂt':?";s‘

; ' . traversal etc,; : ) rotic Nota ions,

Time-Space Trade off. Analysis of an Algorithm, Asymp oti

Searching : Li , _ .
rching : Linear Search and Binary Search Techniques and their Complexity analysis

POINTS TO REMEMBER ﬂ

&5 Data refers to a value or a set of values which may represent SOm® observation from an
experiment or some facts/figures gathered systematically for one of more specific
purposes.

A data item is the single unit of values of certain type th
A file is a collection of related records. A record is @ €O

holds a particular kind of data.
Each entity has certain properties also known as its attributes that describes it.

Entity setis a collection of entities of same type that share the same properties of attributes.
The key which is chosen to uniquely identity a record is known as primary key and other

key (s) are known as alternate key (s)-
Information is defined as the processed summarized or organized data which when

used by its recipient helps in taking decisions.
Data structure is a logical of mathematical model of a particular arrangement or

f data. An efficient data structure uses minimum memory space and

to process the structure as possible.
mic data structure containing of nodes where each node is composed

at have meaning to its user.
llection of related fields. A field

naa 88

A

8

organization ©
execution time

& A linked listis adyna
of data and @ pointer 10 the next node.
& A stack is a linear data structure in which all insertions and deletions are restricted only

at one end called the top of the stacf(. A s’tack is often described as FIFO. The basic
operations parformed on a stack a_re Pgsh and ‘Pop’.
& A queueisa linear data structure In which elements are inserted at one end called
rear end and deleted from the other end called the front end. A queue is said the
FIFO Boheviodt Enqueue 2N dequeue are two basic operations that can be ;P:-:' r;ave
ied on

a queue.
q 1



" LO3D)Y Data Structure &AlgorithnE

5 B §

&

@%Qﬂﬁﬁﬁ%%%

A graph is a non-linear data structure that consists of set of nodes (or vertices) and set
of edges (or arcs), which each edge going from one node to another. Each edge in the
graph depicts a relationship between pair of nodes. _

Traversing, searching, insertion, deletion, sorting, merging, copying, concatenation are
key operations performed on a data structure.

An algorithm is a sequence of steps or instructions requiréd to solve a given problem
The analysis of algorithm based on how much memory an algorithm needs to solve a

particular problem is called the space complexity of an algorithm.
Measure of time complexuty of an algorithm where we disregard certain terms of a function

to express the efficiency of algorithm is called asymptotic complexity.

For a gwen input, the efficiency of an algorithm is complexlty is measured for average
case, best case and worst case.

Searching is an operation in which a given item is found in a list of numbers.
Linear search search the element sequentially starting from the first element.
Binary search is used to find an element of a sorted list only.

In binary search, element present in the middle of the list is determined

In Linear Search data must be stored in any order.

The Binary Search data may be stored in order.

Time complexity of Linear Search is O (n).

Time complexity. of Bmary Search is O (log n).

BSM search eléments’ through middle element.

LSB search elements one by one.

QUESTION-ANSWERS

Q 1. List various non-linear data structures.

(PTU, May 2004)

Ans. Some of the non linear data structures are graphs, trees, multilinked structures

like sparse matrices etc.

Q 2. What is the difference between data structure and data types?

(PTU, May 2004)

Ans. Difference between data structure and data types are as follow :

Data Structure Data Types.

Data structure is a logical or mathematical | A data type is a term which refers to the
model of a particular organization of data. | kind of data that variable may hold in a

e.g. STACK, QUEUE, LINK LIST elc. programming language.
e.g. Integer, float, character etc. _
Q 3. What is meant by merging? | (PTU, Det. 2004)

Ans. Merging means combining the records in two different sorted files into a single



sorted file. In
a single |i SHIRF wonds, merging mea : —_3_
gle list. NS combining the records from two different lists into

Q 4. Wh i
at are non-linear data Structures?

OR

ata structure? Give examples.

| (PTU, May 2011 ; Dec. 2008)
fucture are those which are capable of expressing more
physical adjacency. Examples of these data structures are

(PTU, Dec. 2006 ; May 2007, 2004)

What do you mean by non-linear d

Ans. The non-linear data st
complex relationships than that of
trees, graphs, etc.

Q 5. Compare the runnin

T g time of linear search algorithm with binary search

PTU, Dec. 2004)

Ans. In ¢ ' : ( '
roporional ase of linear gearch algorithm, the time required to execute the algorithm is
0 no. of comparisons. The average no. of comparisons for a file with ‘n’ records

n

. - et . . . n
s = 7, I.e. the complexity of linear search algorithm is given by C (n) = 7.

In case of binary search algorithm, complexity, C (n) = log, n.

Q 6. What are data items? | (PTU, Dec. 2005)
Ans. Data are simply values or sets of values. A data item refers ta a single unit of
values. Data items that are divided into sub items are called group items, those that are not
are called elementary items. For e.g. an employee’s name may be divided into 3 subitems =

first name, middle initial and last name. »

Q 7. For a linear search algorithm, calculate complexity of the algorithm for best
(PTU, Dec. 2005)

care.
or the best case in a linear search algorithm, occur when

Ans. Complexity of algorithm f
item to be searched is, the first element that appears in the list, i.e. C (n) = 1.

Q 8. What is data structure? . (PTU, May 2006)
Ans. Data structure is a logical or mathematical model of a particular organisation of

data. The study of DSs includes :
1. Description of DS
2. |mplementation of DS
3. Quantitative analysis of structure.
Q 9. What is sorting and merging? (PTU, Dec. 2006)
Ans. Sorting : Sorting means arranging the records in some logical order like ascending

or descending order. It may be bubble sort, quicksort, etc.
Merging Merging means combining the records from two different lists into a single.

list.
Q 10. Explain operalions of Data Structure. (PTU’ Dec- 2006)

Ans. 1. Traversing : It means accessing each element atleast/exactly once in order



v S R LO3D) Data Structure & Algori
. == gorithre
It means flndlng the location of a rec P g

. ds Which Satisfy one or more conditi
- Addll"lQ a NeW record refers to insert
! Dgletlpg refers to removing a recdrd.
Arranging the récords in some logical order.

Comblmng records from two different lists into a single list.

Q 11. Write a short note on linear search. (PTU, Dec. 2006)

Ans. | i item i '
n case of linear search, each ltem is compared with a particular item until the

required lt_em is §uccessfully searched. Here, no. of comparisons is equal to the number of
elements in the list. Hence, complexity,

C (n) = O (n).

ord with a given key value gr findinq
ons. ’

ion.
9. Sorting :
6. Merging :

Q 12. What do you mean by linear data structure? Give'examples-
(PTU, May 2008)
Ans. A data structure is said to be linear if its elements form a sequence or in other
words, a linear list. There are two basic ways of representing such linear structures in memory.
One way is to have the linear relationship between the elements represented by means of
sequential memory locations. The other way is to have the linear relationship between the
elements by means of pointers or links. Examples of linear data structure are arrays, stack,
queues etc.

Q 13. What will be the complexity of the linear search algorithm for both the
worst case and average case? (PTU, May 2019, 2008)

Ans. (i) Worst Case : The worst case occurs when ITEM is the last element in the array
DATA or is not there at all. In either situation. We have, |

C(n)=n |

According C (n) = n, the worst case complexity of the linear scalar algorithm.

(ii) Average Case : In this case, ITEM does appear in DATA and that it is equally likely
to occur at any position in the array. | _

Accordingly, the number of comparisons can be any of numbers 1, 2, 3, ....., n and each

number occur with probability.




SHIEUUCTION
5

e

n+1

2
This re : . : 2 needed
to find Iocai:%g o?slTv:gth over initiative feeling that the average number of compérlsﬁzsdata list.
Q 14 ‘D : Mis approximately equal to half the number of elements 1" 2008)
- Define complexity of an algorithm. (PTU, Dec-

; plexity of an algorithm i - ves the running
space in terms of input size. gorithm is the function that give

me al"ld

he efficiency of 2
e. The choice of
quency

516 gr;-mheﬁlzeet'mf and the space it uses are two major measures of t
it - ach of our algorithm will involve a particular data structur
. a structure depends upon many things, including the type of data structuré and fre
with which various operations applied. :

“The complexity of an algorithm M is the function f () which gives the running ik
or storage space required by an algorithm for processing the input data of size n.

Q 15. Define : Algorithm. . (PTU, Dec. 2009)

Ans. An algorithm is a finite set of steps defining the solution of a particular problem. An
algorithm can be written in English like language; called pseudocode. The coding of algorithms
exposed in pseudocode is very simple and straight forward. Algorithm can also be expressed
in the form of a flow chart.

Every algorithm mostly satisfy the following conditions
1. Input : There must be zero or more values which are externally supplied to the

and/

algorithm.
2. Qutput : At least oné value is produced.

3. Definiteness : Each step must be clear and unambigous.
4. Finiteness : The algorithm must terminate after a finite number of steps.

Q 16. What is an asymptoic notation? Mention its types. (PTU, Dec. 2009
Ans. Asymptoic notation Is 8. WaY 10 SXpIBgR AN algorithm'’s efficiency, It is. | )
asymptotic because it deals with the behaviour of the algorithm as The.input Sizen app Cafd

roaches

the asymptotiC limit of infinity. It is used to describe the running time of an algori
i terms of function whose domain the set of natural numbers. algorithm defined
Types of asymptotic notation :
1. Big-O Notation :.It is the formal method of expressin . .
algorithm’s ‘unning time. It is a measure of the longest amount of 9 he‘- Upper bound of
for the algorithm to complere. time it could possip| o
2. Big-£2 Notation : It is same as big-O, but it eXpres Y lake
d of upper bound. It describes the best that can p S
4. (0 Notation (Theta Notation ) : This prOVidéS .EIPP
bound and asymptotic lower bound for a given functj Slmu!taneously bot
4. Little-O Notation : It represents a looge bo on. h
from top, but it does not bound the bottom, Undary Version .

T

instea

fBig-0



5. Little- (Little Omega) : It is much like big omega but its express a loose lower

boundary of the function. It bounds from the bottom.but not from the top.

q 17. What do you mean by complexity? _ (PTU, Dec. 2009)

Ans. The analysis of algorithms is a major task in computer science. In order to compare
algor.ithms- we must have some criteria to measure the efficiency of our algorithms, The
complexity of an algorithm is the function which gives the running time and/or space in terms
of the input size.

Analysis of space complexity of an algorithm or program is the amount of memory it
needs to run for its completion.

The time complexity of an algorithm or a program is the amount of time it needs to run
for its completion.

Q 18. What is the complexity of an algorithm? Also explain time space trade off.

: (PTU, Dec. 2004)

Ans. Complexity of an algorithm is the function f(x) which gives the running time and/or -

space in terms of size and of input data. Rate of growth is the analysis which shows at what
rate complexity of algorithm increases with increase of input size (n).

This is done by comparing f(n) with some standard functions such as logyn, n, n log, n,

n2, n3, 2n,

log,n

B
Ld

Rate of Growth —»

log, n grows most slowly and the exponential function, i.e. 2" growth most rapidy.
i.e. n¢ grows according to exponent ‘c.

Polynomial function, _
Complexities of various algorithm are as follows :

Linear search — o (n)
Binary search — 0 (logz N)
Bubble sort = 0 (n?) )

e sort > 0 (nlogz N). . | |
N!erg e trade off : It specifies that by increasing the amount of. spalcem
Time spac ta or vice versa. The time 1S

ing da

time needed for processing _ smory
AEie: £ re:sgc:othoi key operations. The space is measured by counting max. m
counting :

- . 3 Se .
.

one may %
easured by




Introduction ‘ t
(i) Average case : It is the expected value of f(n).
(iii) Best case : It is the minimum possible value of f(n).

Q 19. Write an algorithm for linear search. Also write its complexity.
(PTU, May 2019 ; Dec. 2008)

> Ans. Algorithm :
Linear Search : A liner search array DATA with N elements and a specific ITEM of

information are given. This algorithm finds the location LOC of ITEM in the array DATA or

sets LOC = 0.
Step 1. [Initialize] set K = 1 and LOC = 0
Step 2. Repeat steps 3 and 4 while LOC=0and K<N
Step 3. If ITEM = DATA [K] then set LOC = K.
Step 4. Set K = K + 1 [increment counter]
[End of step 2 loop]
Step 5. [Successful]

It LOC = 0 then ;
write : ITEM is not in the array DATA
ELSE : '

Write LOC is the location of ITEM
[End of If structure]

Step 6. Exit
Complexity
(i) Worst case C (n) =n
y 1 1 1
(i) Average case C (N)=1—-+2.—+...+N.—
N n n n
1+2 .
=(1+2+ . + ) o
_n (n+1) 1
-2 n
_n+1
T2

d non-linear data structures?

Q 20. What is Data Structures? What are linear an
- (PTU, May 2005)

OR

What is data structures? What are different data structures operations?
(PTU, May _2006 : Dec. 2005)

Ans. Data structure is a logical or mathematical model of a particular organisation of data.




1. Linear - Th :
lists, stacks, queues. S ype of struct
2. Non-linear - Th
. € elements j i
0.9. Treos and graphs. ts in this type of structure doesn't form any sequence. For

Data Struc

ture Operati .
Structure - Ane §

3. Insertion : Addi

Ng a new record.
4. Deletion

: Removing a record.
5. Sorting : Arraying records in some logical order.
6. Merging : Combining records from two different lists into a single list.

Q 21. With an example, explain how will you measure the efficiency of an algorithm,

(PTU, Dec. 2009)
Ans. A algorithm is a null defined list of steps for solving a particular

problem. The time
and space it uses are two major measures of the efficiency of an algorithms.

The complexity of
an algorithm is the function which gives the running time and/or space in terms of input size,

Suppose M is an algorithm and suppose n is the size of the input data. Clearly the
complexity of (n) of M increases and n increases. It is usually the rate of increase of f (n) that

we want to examine. This is usually done by comparing f (n) with some standard function,
such as

log, n, n, nleg, n, n2, n3, 2n
Suppose f (n) and g (n) are functions defined on the positive integers with the proge?ny
that f (n) is bounded by some multiple of g (n) for almost all n. Suppose there exist a position
‘integer no and a positive number M such that, for all n > ny, we have
Ig ()l <M Ig (n)l
Then we may write
f (n) = O (g(n))
This is called the “big O notation
For example, for any polynomial P (n) of degree m,
P (n) =0 (nM) ; eg

Introduction o
8n3 — 576 n2 + 800 n — 245 = O (n%)
The complexity of well known searching algorithms are :
1. Linear search : O (n)
2. Binary search : O (log n)
3. Bubble search : O (n?)
4. Merge search : O (n log n)

Q 22. Write algorithm for linear search. Discuss its complexity. (PTU, May 2005)
Ans. LINEAR (DATA, N, ITEM, LOC)
Here, DATA s a linear array with N elements and ITEM is 2 given item of information.
This algorithm finds the location LOC of item in DATA, or sets LOC = 0. if search is unsuccessful.
1. Set DATA [N+1] = ITEM
2. SetLOC =1
3. Repeat while DATA [LOC] = ITEM
Set LOC = LOC + 1
4. IfLOC =N + 1, then
Set LOC =0
5. Exit
Here, complexity, C = O (n).
Q 23. What is time space trade off? (PTU, May 2011)
Ans. In computer science, a space time or time memory trade off s a situation where
the memory use can be reduced at the cost of slower ¢

Frogram executicn. As the relative
costs of CPU cycles, ram space has for some time been getung crizaper at a much faster rate
than other components of computer the appropriate choizes ‘ar =o time trads offs have
changed radically. Often, by exploiting a space-timz tradec# a program can be madse to run
much faster.

Q 24. Define data type.

Ans. A data type is a term, which is used to refer the
hold in a programming language.

Q 25. What are the various levels of data structure?
Ans. There are three-levels of d
(a) Abstract level

(b) Implementation level

(c) Application level.

Q 26. Write the name of commonly used data structures,
Ans, Commonly used data structure
Q 27. What do you mean b
Ans. Primitive data sti
as int, float, double, char etc. Data structur
are called as non-primitive data s

ata structure

dare slacks. queues lists trees and graphs

Y primitive and non-primitiv

e data structure?
ucture are those wh b

£ PIUviGea by the language itself such
& WHICh are commae

FETHOSEC O primitive data structure
fructures

EEm——



Q 28, Ex
Ans. A g
0ld in term, whins. |
i a programming language : 'thh 'S used to refer the kinds of data that variable mag,
as data type. + IN other words the general form of a class of data items ig

Plain the ¢

LO3ID> Data Structure & Algorit
e - “Oncept of data t s
type is a ype.

Data Types

Integer

—> Array
Float — String
Double — Structure
Character —» Union
Void —» Class
L—» User defined
Q 29. What are the various types of data structure? "

Ans. Data structure are mainly of two types :
1. Linear data structure
2. Non-linear data structure.

Q 30. Write the various applications of data structure.
Ans. The applications of data structure are as follow :
1. It gives considerable help in compiler design.

2. It provides the methods of representing the data elements in the memory of computer

efficiently. . .
It describe the physical and logical relationship between the data items.

3
4. Database management system. . .
5.1t provides the considerable help in managing the operating systerp.
6
7

. It help in graphics applications. iy
Data structure find its major application in artificial intelligence.

8. It is useful in simulation.

Q 31. Define algorithm. | .
Ans. An algorithm is a finite set of instructions which if followed, accomplish a particular

sk.

_Introduction : : 11

Q 32. Explain the complexity of algorithms. )

Ans. An algorithm is a sequence of statements, each of which has a clear meaning and
can be performed with a finite amount of effort is a finite length of time. An algorithm is
supposed to do two things.

(a) Compute the correct answer given valid input data.

(b) Perform the computation in a reasonable time.

A correct algorithm is useless if it is too slow. In such a case, we must find another
algorithm or any be we will have to accept some approximation which allow us to use another
algorithm, which genrates an approximately correct results.

These analysis are done without reference to any specific computer or programming
language, the issue is how many calculation steps are needed to obtain the result and how
this depends on the size of the problem. One of the most important properties of algorithm is
how its execution time increases as the problem is made large. By a large problem, we mean
sequences to align or longer sequences to align. This is so called complexity of algorithm.

Q 33. Explain the concept of Big-O notation. _

Ans. Big-0 is the formal method of expressing the upper bound of an algorithm’s running

time. It is a measure of the longest amount of time it could possibly take for the algorithm to
complete.

Mathematical description of Big-0O. notation

Assume f (n) and g (n) be two arbitrary functions, such that :

f(n) =0 (g (n)), read as f (n) is “big-0” of g (n) or f (n) is of order g (n), if there exists
Positive constants n, and C, such that f (n<C*g(n)foralns Ng.

Example :

(a) 100 N3 = 100 * n3 is O (n3)

(b) 1000 is 0 (1)

(¢) n+log nis O (n) because logn<n

(d2n2+38n+4is0 (n2).

Q 34. What is Big ‘O’



LO3D> Data Structure & Algorithms

(in SOme arbi
The a,gm_m:tr;azor::{easurement of time) in terms of the number of elementg
form its owr, °Peraljos by first calling a subroutine to sort the elements in the
Ne runs the algorith NS. The sort has a known time complexity of O (n2), ang
» the overg) time o m mus:t take an additional 55n3 + 2n + 10 time before it
TMm=0 (n2 orn;:;lex.(y of the algorithm can be expressed as
aps be m J# 5-5

grows asymptotically ng ¢ ost easily read by replacing O (n2) with “some function that

aster than n2» Again, this usage disregards some of the forma|

meanmg Gf the 6__m
= and ll+n -
of convenient place holdersymbms' but it does allow one to use the big O notation as a king

ThlS can perh

Q 35. Define th
the suitability of 4 e tl.!l'm data structure and discuss the criteria used for evaluating
Particular data structure for a given application. (PTU, Dec. 2012)

Ans. Data :
. Struc.ture : Data structure is a particular way of storing and organizing data
Puter so that it can be used efficiently,

Types of data structure '

1. Linear data structure

2. Non-linear data structure

Application : Array and linked list, which are linear data structures, tree is hierarchical
(or non-linear) data structure.

One reason to use tree might be because user wants to store information that naturally
forms a hierarchy. For example, the file system on a computer.

/ +— Root

/\

Home

\

Upread Course
y | ™~ cs113

—_— 0S101 CS5112

Q 36. What data structure is used by compiler to handle function calls and how?
(PTU, May 2014)

Ans. A call stack is used by complier to handle function calls. A call stack is a stack dat.a
structure that stores information about the active subroutine of a computer program. T.hIS
<ind of stack is also known as an execution stack, control stack, run-time stack or machine
stack, and is often shortened to just “the stack”.

Consider events when a function begins execution

O Activation record or stack frame is created.

0 Store the current environment for that function

Local Return
variables address

Function

Parametgrs value

[ a@‘ 0s

“end. Advantage lies in the simplicity

13

Introduction

ion is called... 4
Whgn a ';:.n::gvatlon record pushed onto call stack or run-time stack.
(i) Copy

gum i ter spaces.
i) A ents copled into parame .
E")) C;ontro[ transferred to starting address o body of function.
1l f

Function call f2 (x+1)

Top—+ p a1 B AR for 12()
s A |ARforfiQ
a[3]| os |AR formain()

When function terminates
(i) Run-time stack popped .
O Remove activation record of terminated function.

O Exposes activation record of previously excuting function.

/‘( nZ| s ] l =
Return from f3() )
8

Top—# p E a1 AR for f2()
X A |[ARforfi() -
a[3]| os

Pop stack and
return to popped
address c with
function value 5

AR for main()

(i) Activation record used to restore environment of interrupted function.
(iii) Interrupted function resumes execution.

Q 37. What do you mean by searching?
Ans. Searching is an operation in which a given item is found in a list of numbers.

Q 38. What are the various kinds of searching in data structure?
Ans. Searching are basically of two types :

(a) Linear Search

(b) Binary Search

Q 39. What is linear search?

are arranged in a random order.

preseﬁt in the middle of the list is determ;i . I
the middle element, the binary search is

Pemmmmn



LO3D> Data Structure & Algorithmg 15

Introduction

'S greater than _
first and the tastthr?arl?lgie element, the binary search is done on the s.emndlha" (?gm)' Th Step 3 : If ITEM < DATA [MID] then
Q 41, Diﬂerantiate :gam divided into two by determining the middle element. set END = MID—1
Ans. The main diff etween linear search and binary search. olgs
[ St Srénce between linear search and binary search are as iollm'\.ri___j set BEG = MID+1
In Linear Sear h Binary Search : [END of if structure]
in any order ©h data must be stored | 1. In Binary search data may be stored in Step 4 : Set MID = INT ((BEG + END) /2)
Linear Searc-h ) order. . [END of step 2 loop)
Time compf _mf_'lhod Is slow. 2. - Binary search method is fast. % Step 5: If DATA [MID] = ITEM then
LEM plexity is O (n). 3. Time complexity is O (log n). ) Set LOC = MID
Search elements one by one. 4. BSM search elements through middle else
LSM i element. . set LOC = NULL
IS best when data is sorted or 5. BSM is best when data is sorted. [End of if structure]
unsorted but short in length. Step 6 : Exit.
Complexity of Binary search algorithm

Q 42. What do you mean by searching? What are the various types of searching?
Ans, Searching is an operation in which a given item is found in a list of numbers.
Types of Searching : Searching are basically of two types :

(a) Linear Search

(b) Binary Search

(a) Linear Search : Linear search is the simplest form of search. It searches for the

f (n) = [logy n] + 1
" Q 45. Compare the linear search with binary search. (PTU, Dec. 20C
Ans. In case of linear search, the elements are searched one by one, i.e. each elem:
is compared with a given element one by one.
Here, complexity is given as':

element sequentially starting from the first element. This search has a disadvanle!,gc‘a if the 5 1 ; ;
element is located at the end. Advantage lies in the simplicity of the search. Also it is most P+ 2, = + 3. = Bercoon +n. =
useful when the elements are arranged in a random order. o . .
(b) Binary Search : Binary search is most useful when the list is sorted. In binary . (1+2+3+.. +n). —
search, element present in the middle of the list is determined. If the key Fnumber to search) » [n TR
. is smaller than the middle element, the binary search_is done? on the first half. If the key n . —
(number to search) is greater than the middle element, the blqaw search is don:e .on the e )
second half (right). The first and the last half are again divided into two by determining the o 0( - ) : 0[5)
middle element. : . | i
Q 43. What is the advantage of binary search algorithm? . (I;Tp, May 20:4) ie. C(n) = o
i i lv efficient algorithm. Binary search technique searches
AT Eondltle GO n In case of binary search, there are 2 primary conditions :

- : . ; i ity of O (log,n).
data in minimum possible comparisons with the time complexity o ( Qz(IlTU ey 500 " sl e
Q 44. Write an algorithm for Binary search. ’ 2. One must have direct access to middle element.

Ans. BINARY (DATA, LB, UB, ITEM, LOC) ‘
Tr?e DATA is sorted array with lower bound LB and upper bound UB a.nd ITEN! |§ a MID = INT (?’EG_TEEQ]
iven item of information. The variables BEG, END and MID denotes lrespef:tweiy beglmr\g. . 5
gnd and middle locations of a segment of elements of DATA. This algorithm finds the location 2. |: A [MID] = ITEM, then Location = MID
EOC of ITEM in DATA or sets LOC = NULL. ; E:\SEAD] > ITEM, BEG = 1 END = MID — 1
1 : [Initialize segment variable] |
e Let BEG = LB, END = UB and MID = INT [(BEG + END)/2] . EBEG =MID + 1, END < \.
I ' case of binary search |
. teps 3 and 4 while BEG < END and ry rch, complexity f.e,
Step 2 : Repeat step . ket

DATA [MID] # ITEM



LU= Udld SUULLUTE & Algoﬁthm
S

search and discuss its limitations.
(PTU, Dec. 2005

"‘”10 -
an algorithm for bina.l;;
Ans. Rine
g LT TN
O inform with o
1A

'UB, ITEM, LOC)
alion. This alaar Wer bound LB and upper bound UB and ITEM is any give
Set BEG LB anlhm finds the location LOC of ITEM in DATA or sets LOC = NULE
MID = :

R INT [(BEG
<. Repeat Steps 3 + END)/2)

and DATA {MIDiand 4 while BEG < END

item

rJJ
5
m
=

Else,

Set BEG = Mip + 1

. lsfe: MID = INT [(BEG + END)2]

- IFDATA [MID] = ITEM, then
Set LOC = MID

ELSE :

Set LOC = NULL
6. Exit. =

Limitations of Binary search : The primary conditions for binary search are :

1. The data must be in sorted order, thus, it can't be used in case data is unsorted.

2. Qne must have direct access to middle element. Thus, they aren't used for search-
Ing in a link list as there is no direct access to middle element.

Q 47. What do you mean by binary search? Write an algorithm that demonstrates
oniary search. (PTU, Dec. 2011)

Ans. In computer science, a binary search algorithm (or binary chop) is a technique for
ocating a particular value in a sorted list. The method makes progressively better guesses,
nd closes in on the location of the sought value by selecting the middle element in the span
which, because the list is in sorted order, is the median value), comparing its value to the
arget value, and determining if it is greater than, less than, or equal to the target value. A
uessed index who value turns out to be too high becomes the new upper bound of the span,
nd if its value is too low that index becomes the new lower bound. Only the sign of the
fference is inspected : there is no attempt at an intepolaton search based on the size of the
fference. Pursuing this strategy iteratively, the method reduces the sear.clj span by a fgctor
- two each time, and soon finds the target value or else determines that it is not in the list at
I. A binary search is an example of a dichotomic divide and conquer search algorithm.

// recursive binary search

// returns index of found element _
// or the ones complement of where it should be if not found

int binsearch (int*a, int n, int low, int high) {
int mid = (high + low) 12
if (high < low) return = low—-1;

Introduction

17

if (a [mid] = = n) return mid ; |
if (a [mid] < n) return binsearch (a, n, mid + 1, high) ;
else return binsearch (a, n, low, mid-1) ;

i}nta [1={2.8,5 7, 11, 13,17, 23, 27} ;

intn, r;

for (; 3) {

cout <<end! << “Enter search term " ;

cin >> n ; if (n = =0) break ;

r = binsearch (a, n, 0, 8).;

cout << end / << “Result " ;

if (r>=0)cout <<“Found :“<<r<<""<<alrl<<end!;
else {

cout <<"Not Found " << —-1-1<<"";

if (—r—1<9)cout<<al-r—1] << end!; else cout << "?" << end/ ;

}

i

Q 48. Suppose a sequence of numbers is given like :
5,10, 12, 18, 56, 68, 52, 85, 95

(a) What are the various steps in which the number 52 will be found by the Binary search’
(b) In how many steps the number 52 will be found in the linear search?
(c) In how many steps it will be found in the binary search that the number 8

does not exist in this array?
Explain the algorithm involved in each of the problems a, b, c.
Ans. (a) 5, 10, 12, 18, 56, 68, 52, 85, 95
Beg =5
End = 95
Mid = Beg+End _ 1+9 _ 10
2 2 2

5 10-12 18 56 68 8
2 5 95

Beg = 56
End = 95
The step is only 1 for 52 will be found.
(b) Step 1. Add 52 in the last
then match it with first no
Step 2. 52 match with 5
Step 3. 52 match with 10
Step 4. 52 match with 12
Step 5. 52 match with 18
~Step 6. 52 match with 56
Step 7. 52 match with 68

(PTU, May 201:




LO3D> Data Structure & Algorithpy,

52 match with 52

It takesg total g
8 st
(€) 519 12 18 52 ssegg-sz
ow
Beg =5 {1)
End = 92 (9)
Step 1 1+9
- Mid S —_— = 1—0— i
3 5 i.e. 52
5 10 12 15 (2 s6 68 85 o5
. Left = 56 Endgs
Left = Mig 4 1=541=¢ .
Step 2,
56 68 g5 95
Beg +Eng 1+4 5
It will take 3 steps.
Q 49. What are the Mathematical notation used to define the complexity of an
algorithm. '

- (PTU, Dec. 2013)
Big O notation is used to

Ans. The define the complexity of an algorithm.
_ Q 50. Define the terms: static and dynamic data structures. List some of the
“Static and dynamic data structure in C. (PTU, Dec. 2014)
Ans. Data

_ Structures which have fixed size and have their memory allocated during the
time of compilation of the program are called static data structures.

) Typically, the elements (nodes) of a static data structure will have consecutive addresses
in the memory. An array is an example of the static data structure.

A data structure that can grow and shrink, with memory allocated during the execution
of the program is known as a dynamic data structure.

Typically, the elements are stored whenever there is a free space. A linked list is an
°xample of the dynamic data structure.

Q 51. What criteria is used for evaluating the suitability of a particular data
tructure for a given application. (PTU, Dec. 2014)

Ans. By employing a series of evaluation criteria, the suitability of different data structures
or different tasks can be explored. The following criteria are :

(a) Completeness : The proportion of entities which can be represented.

(b) Robustness : The ability of the model or structure to handle special circumstances.
(c) Efficiency : The compactness and speed of use ;

(d) Versaitility : The ease with which the model or s

(e) Ease of generation
particular structure.

(f) Functionality : The range of operations which ma

(g) Utility : ease of use of the data model or struct

yslem can be applied to new situations.
: The ease with which raw data can be transformed into a

y be performed on data in this form.
ure,

19
Introduction

= i ?
Q 52. What do you mean by the time complexities of an al(%?rrsh&‘ay i1, %01:;
- p ime taken DY
Ans. The time complexity of an algorithm quantifies the amount Otfh : Tput, The time
algorithm to run as a function of the length of the string representmguon which excludes
cogmplexity of an algorithm is commonly expressed using big O notation,
coefficients and lower order terms.

ay 2015)
Q 53. Differentiate between linear and non-linear data structure."gi‘-'th:‘w‘lay Fidy
Ans. Main difference between linear and non-linear data structures i yed sequentially
organize data elements. In linear data structures, data elemeﬁts are 0!;.':.]::& data struuctures,
and therefore they are easy to implement in the computer's memory. In nonli ecific relationships
a data element can be attached to several other data elements to represent sp be connected 10
that exist among them. Non-Linear data structure is that if one element can
more than two adjacent element then it is known as non-linear data stroucturt-‘;_ru Dec. 2015)
Q 54. What are the objectives of studying data structures ? (_ ns'to dalEiiing
Ans. O To identify and create useful mathematical entities and operatio
what classes of problems can be solved using these entities and_qperalnons. s ik
QO To determine the representation of these abstract entities and 1o imp
abstract operations on these concrete representation.
‘ Q 55p. Why complexity of linear search is of the order of O(n) ? (PTU, May 201;
Ans. Linear search is obtained by next«low. So worst-case access time in O(n)
linear search.
Q S56. A sorting method with “Big-Oh" complexity O(n log n) spends 'exac!
‘1 millisecond to sort 1,000 data items. Assuming that time T(n) of sorting n |tem's
| directly proportional to n log n, that is, T(n) = cn log n, derive a formula for T(n), giv
| the time T(N) for sorting N items, and estimate how long this method will sort 1,000,C

items. (PTU, May 20
Ans. Because processing time is T(n) = cn logn

T(N)
the constant factor ¢ = ——
PR Nlog N
nlogn
and T(n) = T(N) Nloa N logN -

Ratio of Idgarilhms of the sa

me base is independent of the base, hence any appro
base can be used.

Therefore, n= 1000000 the time is
T:(1,000,000)= T (1,000)
1000000 log1 1000000 _

10000006 _
1000 logy 1000 ' -

1000.3 &
Q 57. What are non recursive procedures ? -
Ans. Non recursive

Programming language wh

000 ms

procedures are the subrouting or functions i
ose implementation does not reference itself.

QQa



=
|
Stacks and Queu% -
ADT Stack . _ : . =
&t Sta:“(d(_i:lnd 'ts Operations - Algorithms and their complexity af"aiys's- ADDIiCation
o, S Xpression Conversion and Evaluation - Correspon_dmg algorithms i S | g
QUeLF: E-Xlty analysis_ ADT queue, Type of Queue : S[mp!e Queue, CITC"JIar Queue' P!'ior{
€ Operations On each types of Queues : Algorithms arjd their analysis, (<4
\ \
=

POINTS TO REMEMBER @

" Stack s g linear da
only at one end ca
Push is the term us

ta structure in which insertion and deletion of an elem
ed the top of the stack.

ed to insert an element into a stack.

Pop is the term used to delete an element from a stack.

Stack can be traversed from top to bottom or bottom to top.

In stack, elements can be inserted at any place by shifting pointers.
The element can be deleted by shifting pointer.

Stacks can be maintained in
(i) Using Array '
(i) Using linked list

memory using two methods :

If operator symbol is placed between two operands, it is called infix expression.

If operator symbol is placed before its two operands it is called
polish expression.

Stack words an the principle of LIFO.

=

o

l:i*'

as prefix expression o

F

The stack top or pick operation returns the element at the top of the stack without altering

the stack. _
Stacks are used to convert infix expression to post fix expression.
Stacks are used to sort the elements using quick sort.

Top pointer contains the location of the top element of the stack.

A queue is a linear data structure in which new elements are inserted at one end &

elements are deleted from the other end.

20

"altering the queue.

- i

A queue follows FIFQ (First=in, F
the order in which they enter.
The enqueue operation ig used to insert a new element to the rear of the queue. The
newly inserted element becomes the rear. ’
The dequeue operation is used to rem

irst-out) Property in which elements leave the queue in

Ove an existing element from the front of the

The front peek operation returns
the queue.

The rear peek operation is used t

the element from the front of the queue without altering

o return the element from the rear of the queue without

The circular queue is an improved arra
when you want to insert a new eleme
and there are empty locations at the
In a circular queue, elements are arra
followed by the first element.

Y representation of a queue. It handles the problem
nt in the queue when rear reaches the end of array
beginning of the array representing queue.

nged in such a way that the last element is logically

In the linked queue, the actual data item is stored in the INFO part of the nod= and link
part of a node contains a pointer that points to the next element of the queue.

A deque (double-ended queue) is a linear list that allows insertion and deletion at either
end i.e. at the front or rear of the queue but not in the middle.

Insert left, insert right, delete right and delete left are the four basic operations performed

on a deque.

The deque generalizes both the stack and queue. If you restrict yourself to insert left and
delete left operations then deque acts as a stack.

A priority queue is a variation of sim
a key called priority. Elements are o
highest priority are removed first.
In the linked representation of priorit
priority values of the elements.

Queues are used in simulation, some sortin
algorithm etc.

ple queue in which each element has been assigned
rdered by priority in the sense that elements with the

Y queue, all the nodes are sorted according to the

g and searching techniques, round robin

QUESTION-ANSWERS

Q 1. Write procedure to POP top element from STACK.
Ans. POP (STACK, TOP, ITEM) 2

This procedure deletes the top element of STACK and assigns it to variable ITEM.
1.1f TOP = 0, then : Print : Underflow and return :
2. Set ITEM : = STACK [TOP).

3. Set TOP : = TOP - 1

(PTU, May 2005)

» 4. Return.



22

LO3D> Data Structure & Algorithms

hat g4
ata Stry :
Structyre cture operations can be applied to stacks? (PTU, Dec, 2005)

Oper.a“OnS that can be applied to stacks are :
Le. deleti 9 ar: item into stack.
DErationsng an item from stack.
a fun E-lre Performed only on top of the stack.
O to PUSH a new item to STACK.

(STAck, Top
FTOP < Max. Mol MAX, ITEM)

! Push,

.8, i”Sertin

(PTU, Dec. 2005)

: low & Ret
:23’. Set Top - ToP . 19 urn.
- Set STACK [T
OP] =
4. Retum, 1=ITEM
Q q. What ar

Ans. 1. g © uses of stacks?
- 1. Sta - _
g Slac:S are used to convert infix expression to post fix expression.
3‘ = CKs are used to evaluate postfix expression.
- Stacks are used to sort the elements using quicksort.
2 5' :vhat 'S stack? (PTU, Dec. 2006 ; May 2006)
NSs. A stack is a list of elements in which an element may be inserted or deleted only at

(PTU, Dec. 2005)

Oone end calied top of the stack.

i.e. push and pop

Itis a LIFO system, i.e. last element entered is the first element to delete. Two operations,
Operations are used for insertion and deletion in stacks.

;Top

Q 6. Distinguish between stack and queue.
Ans.

(PTU, May 2008, 2007)

Stacks and Queues

23
(PTU, May 2008)

icati k.
Q 7. Write any two applications of s(t)a;

(PTU, May 2019, 2009)

plications of STACK are as follows :

List few applications of stack.
loyed in evaluating

. Application of Stack : The main ap
i ?n:valt?:tion of Postfix expression : The stacks are commonly emp

of postfix expression.

i : e used to
2. Conversion of infix expression to post fix expression : Stack can b

Iconven infix expression into the post fix expression.

Q 8. Write the prefix notation for the expression.
(A+B)*C-(D-E)~F
Ans.(A+B)*C—(D-E)~F
=[+AB]*C - [-DE]J"F
= [* +ABC] - [» -DEF]
=-*+ ABC ~A—- DEF
Q 9. Define ADT and give an example. FPTU, May 2—099)"
Ans. In computing, an abstract data type or abstract data strugture is a mather_natlca
model for a certain class of data structures that have similar behawo.ur. or for ceu:tam c.iata
types of one or more programming languages that have similar semantics. An ;_QDT 1S dehtj\ed
| indirectly,only by the operations that may be performed on it and by mathematical constraints
' on the effects (and possibly cost) of those operations.
For example, an abstract stack data structure could be defined by two operations ;
| push, that inserts some data-item into the structure,and pop, that extracts an item from it;
‘ Example : abstract stack (imperative).

Q 10. Write the postfix notation for the following expression :
(A+B)*C—-(D-E)AF

Ans.(A+B)*C—(D-E)AF

The positive notation for the given expression is as follows :
[AB+]* C - [DE-]AF

[AB + C*] - [DE - FA)

=AB+C*DE-FAr—

Q 11.-What do you understand by polish notation? Explain. (PTU, May 2010)

(PTU, May 2008)

(PTU, Dec. 2008)

Stack Queue

Ans. Polish notation refers to the notation in which the operator symbol is placed before

—

A queue is a linear list of elements in
which deletions can take place only at
one end, called, front and insertions can
take place at other, called rear end.

It is also known as FIFO, i.e. First In
First Out.

As stack is a list of elements in which | 1.
an element may be inserted or deleted
only at one end, called, top of the stack.

it is also known as LIFO, i.e. last In first | 2.

out.

its operands in order from left to right. If an operand is an o i i
. eraiton with o
same rules apply. P perands, then the

For example :
(X+Y)*Z =[+XY]*Z ="+ XYZ
X+(Y*2) =X+['YZ]= +X*YZ

e.g. Stack of coins are above the other. | 3.

e.g. Queue of people waiting for a bus.



LO3IDY Data Structure & Algofithms

- Sing
; € ea . : ;
call itsg| ch funchon funs in its own environment, it becomes possible for
f. n n j a

€ stack exacutth‘;:unction Completes its execution these parameters are POppeg
. € the next neste
s Consmer the folio acl cal.

wi . ' - * — .
ure apng evaluate 1 Ng post fix expression, P : 5, 6, 2,+,%12,4,/, -~ Write

Ans. is €Xxpression. (PTU, Dec. 2004}

1. Add ari
P:s, ”gh‘_'_p%renthesis

ight parenth

at the end of post fix expressions.
5 V2, 8 1w )

left to right and re
esis is €ncountered,

dis €ncountered, put it on the stack.

P:[5[eT=

encoumered, then, re
back on stack.

* [ETeTa]s]
P: [5]8]-
> o[l
P: |40] 8=

4. Ifan Operator jg

move the top 2 elements, apply operator an
Place the result R ERFRp 9

— R

.. Value = 37
’ Symbols scanned Stack
5 5
6 5 6 .
2 58,2
+ 58
* 40
12 40, 12
4 40, 12, 4
/ 40, 3
- 40, 3
) 37

peat the following steps for each element of ‘P’ unti

25
Stacks and Queues

#Q 14. What is a top pointer of a stack? (PTU, Dec.‘.T 20;0;

Ans. Top pointer which contains the location of the top element of the stack ; an e
variable MAXSTK which gives the maximum number of elements that c.:an be held by
stack. The condition TOP = 0 or TOP = NULL will indicate that the stack is empty.

Q 15. Consider the postfix expression :

P:12,7,3,-,/,2,1,5, +,*, +.

Write the procedure and evaluate the expression.

Ans. " )

1,7 Add a right parenthesis at the end of post fix expression. - .

2. Scan P from left to right and repeat to following steps for each element of ‘P’ unti
right parenthesis is encountered.

3. If an operand is encountered, put it on stack.

4. If an operator is encountered, then remove the top two elements, apply operator
and place the result back on stack.

(PTU, Dec. 2005)

Symbol Stack
12 12
z . 12,7
3 12,73
. 12, 4
/ 3
2 r 3,2
1 3,21
5 A 3,215
+ 3,2,6
' 3,12
+ 15
) 5]

. Value = 15,

Q 16. Consider the following infix expression :
((A+B)=*D) T (E-F).

Write the expression and convert into the equivalent postfix expression.

(PTU, May 20
Ans. K
Symbol Stack P

( ((

( (((

A ((( A

+ (((+ A

B (((+ AB

S —



26

LO3D> Data Structure &Algorithms
2 (( AB +
D ((* AB +
) ™ AB+D
2 ( AB + D*
( (T AB +D*
E (T( AB +D*
(T¢ AB + D*E
; (T (- AB + D*E
(T (- AB + D*EF
) (T AB + D* EF -
) AB + D* EF - 1

Hence, Postfix expression.
P:AB+ D~ EF-1
17. Explain conce

Q
Ans. A stack is a list o
Oone end, called

order of that in w
(LIFO) structure.

Pt of stack along with its applications.
f element

top of the stack. He
hich they were inse

s in which an element may be inserted or deleted only at
re, the elements are removed from a stack in reverse
rted into the stack. Stack is also called a Last-in First-out

Two basic operations associated with stacks :
(i) "Push" is used to insert an element into stack.
(ii) "Pop" is the term used to delete an element from a stack.

l— Top

3
2
51
Application of stacks :
1. Evaluation of postfix expressions : Stacks are commonl
of postfix expression P. Various steps involved are :
(i) Add a right parenthesis at the end of postfix expression.
(ii) Scan ‘P’ from left to right and repeat the following ste,
parenthesis is encountered. -
(iii) If an operand is encountered, put it on stack.
(iv) If an operator is encountered, then remove the to
and place the result back on stack.
2. Conversion of infix expressssion to postfix :
infix expression to postfix expression.

y employed in evaluation

ps for each element until right

P two elements, apply the operator

Stacks are also used to convert an

(PTU, Dec. 200g)

27
" Stacks and Queues

e.g. If an infix expression is :
5* (6 +2)—12/4

Symbol Stack P
5 ( S
. * 5
6 (*( 56
+ ( " ( -+ 562
2 (" (+ =
: (w 562+
A - 562 + *
12 (~ 562 + *12
/ (~/ 562 +* 12
4 (~/ 562 + * 124
562 + * 124/-

.. Equivalent postfix expression is
562 + * 124/-

3. Quicksort : Quicksort is an algorithm which uses divide and conquer technique
sort the elements. Stacks are used for sorting. In this algo, we position the first element
applying some iteration at its correct position and divide the complete list in two parts and
using stack, we keep track of these two lists.

Q 18. Write a program for implement stack using arrays.

Ans.

#include <iostream.h>

#include <process.h>

void push (inta [ ], intn);

void pop (inta []);

void display (inta [ ], int) ;

int top = —1;

void main ()

{

inta[51], n;

char ch = 'y

while (ch = ='y' i ch == YY)

{

cout << "Insert element into stack",
cin>>n;
Push (a, n) ;

cout << "Want to insert more?" :
Cin >> ch ;

(PTU, May 20



do

{

sfnut «:c"Current stack jg* -
ISplay (a, top) ; I

Ccout .:qnwa :
. nt to d ; i
Cin >~ ch: elete item? '

o (°h=='y‘::ch==-y.)
Pop (a) ;
else
ch = n' -
} while (ch = = Yiich=ry).
Cout << "stack js" : "
display.(a, top) :
}

Vvoid push (int a [] intn)
{
if (top = = 51)
{
© cout <<"overtlow" :
exit (0) ;
}
top =top + 1 ;
altop]=n;
}
void pop (inta [])
{ if (top==-1)
{ cout <<"under flow" ;
exit (0) ;

}

int them = a [top] ;

cout <<" llem deleted : "<< item ;

top=top—1;

}
void display (int ¢ [ ], int top)

{
for (inti=top;i>=0;i--)

cout <<" "<< ali],

}

28 _
ata Structure & Algorithmg
} : LozD> D

29

pression?

Stacks and Queues G o
Q 19. What is the polish notation representation of the follow

(A*(b+C)+(b/d)a+z (PTU, May 2010)

(a+(b+c* (d+e)) +f
Ans.
1. (A*(b+C)+(b/d)"a+z
= (A* [+bC]) + [/bd] "a+z
~[* A+ bC] + [*/bda] + z
=[+*A+bC*/bda]+Z
= ++ *A + bC*/bdaz
Hence, the expression in polish notation is :
++*A + bC */ bdaz
2. (a+(b+C (d+e))+f
~(a + (b + C* [+de])) + f
=(a+(b+["C+de]))+f
= (a + [+b*c + de]) + f
=[+a+b*c+de]+f
=~ ++a + b *c + def
Hence, the expression in polish notation is :

++ a + b*c + def
Q 20. Compare stacks and queues and discuss their limitations.
(PTU, Dec. 2007)

Ans. Two of the more common data objects found in computer aigorithms are stacks
and queues. Both of these objects are special cases of the more general data object, ar

ordered list.

A stack is an odered list in which all insertions and deletions are made at one enc
called the top. A queue is an ordered list in which all insertions take place at one end, th
rear, while all deletions take place at the other end, the front. Given a stack S = (a 1. al2
... a [n]) then we say that al is the bottom most element and element a [i]) is on top
elementa[i—1], 1 <i<=n. When viewed as a queue with a [n] as the rear element one sa

thatal[i+1]is behind a[i], 1 <i < =n.

E |+—Top

D Front Rear
C l l

B

A ABCODE
Stack Queue



T Eleme . “s Last In Fi TR R S R e e
S the first Jo nt wh Firs

- e L i A Tk e Tl N Tl T T 8 CWilauks
i '] s in First Out (LIFO) lists. The restrictions on queue imply
ote Kty rto be removsedﬁf-‘d INto the queue will be the first one to be removed, T,
€ da ; €d, and queu irst In First Out (FI i
mathematical con Object Queue as de‘f:: e ’ e

Cept : ned here need not necessarily correspond tq t
Q 24 °f queue in which he

* What jg th the insert/delete rules may be different.
e .
LAn *(b+ )+ (wd)*PaDjtzﬂx and prefix representation of the following expressio
S. Slep 1. Fu”y p

(PTU, Dec. 2019
arenthesize the expression, }

St I=(A*®b+c .

€p 2, Convert 1o Postfix egcpres;)io;.“b!d) e
'=((A* (be+)) + ((b/d) * (a + 2)))
I'= ((A* (be+)) + ((bd) * (a + 2)))
I'=((A* (bc+)) + ((bd)) * (az+)))
I'= ((A (be+*) + ((bd/) * (az+))
I'= ((A (bc+)) + ((bay) (az +)%)

['= ((A (bc+)*) ((bd/) (az+)*) + )
Q 22. Give ap

LeE=Li+h
Where, n — no. of internal nodes
Lg — length of external nodes
L; — length of internal nodes.

Huffman's algorithm is used to find a tree with minimum weighted path. Operations
possible on stack are :

Push : PUSH operation is used to insert an element at the top of the stack.
PUSH (STACK, TOP, MAX, ITEM)
1. If TOP = MAX, then :
Print : overflow and return
2. Set TOP=TOP + 1
3. Set STACK [TOP] = ITEM
4. Return.
POP : Pop operation is used to delete an item for Top of the stack.
POP (STACK, TOP)
1. If TOP = NULL, then :
write : underflow and Exit
2. Set ITEM = STACK [TOP]

; Plication of stacks . . I .
JOssible on stack. » queues anc trees. Also list the operationg

; (PTU, May 2004
Ans. The application of stacks are as follow :

1. Evaluation of post fix expression :
Stacks are commonly employed in evaluation of a postfix expression.
2. Conversion of infix expression to postfix expression

Stacks are used to convert an infix expression to postfix expression.
e.g. It infix expression is :

5* (6 +2) - 12/4
Then, using stacks, the posttfix expression is :
562 + "124/-
3. Quick sort : Quicksort is an algorithm which uses divide and conquer technique to

t the elements. Stacks are used for sorting. Here, we position the Ist element by applying

ne iteration at its correct position and divide the complete list in 2 parts and by using stack,
keep track of these 2 lists.

The application of queues are as follow :
1. Breadth First Search (BFS) : The main application of queues is in traversing the
 using Breadth First Search (BFS), i.e. to find path between and 2 vertices in graph.

2. Priority queues : Priority queues are used to assign priority, s.t. an element of
or priority is processed before any element of lower priority.

3. SetTOP=TOP -1
4. Exit.

Q 23.
12‘! 9! 3! _;I 3! 2’ 5! +! 'l +.

Write the procedure and evaluate the expression.

Consider the following mathematical expression written in postfix :

(PTU, May 2005
Ans,

Symbols scanned Stack
12 12
9 12,9
3 12,9, 3
- 12,6
/ 2
3 2,3
2 2,3,2
5 2.3, 2:5
+ 2.3.7
" 2, 21
+ 2

- Value = 23.



— 1S

- Rl i . :

infix to Postf?xmam about infix, prefix and postfix and write an algorithm to Conver
Ans. Fo, ©Xpression, (PTU, May 2005

mo y : i
two OPerangs. St common arithmetic operation, operator symbol is placed betweg, its

This js Foreg A+B o D, E * F efc.
Calleq infix Notation.

() Polj ; :
.placsz Notation, j.e, Prefix notation refers to notation in which the operator Symbol jg
€d before jis two operands. e.g.
() +AB, ~CD, *EF etc
1) Re " N s .
Verse polish Notation, i.e., postfix expression is an analogous notation jn which

I . -

Polish (Q, P)
Su i o - .

e Ppose Q Is an arithmetic expression written in infix notation. This algorithm fingg the
alent postfix eXpression p
1. :

Push “("onto STACK, and add")" to end of Q.

2. ‘Qr
Scan ‘Q’ from left to right and repeat steps 3 to 6 for each element of ' untj
STACK is empty.

3. If an operand is encountered, add it to P.
4. Ifaleft parenthesis is encountered, push it onto stack.
5. Ifan Operator (X) is encountered, then (a) Repeatedly pop from STACK and add tg

P each operator which has same precedence or higher precedence then X (b) Add
X to STACK. '

6. 'If a right parenthesis is encountered, then :

(a) Repeatedly pop from STACK and add to ‘P’ each operator until a left parenthesis
is encountered.

(b) Remove the left parenthesis.
7. Exit.

Q 25, What are the various operations possible on stacks? Explain the algorithm
for each of them. (PTU, May 2019 ; Dec. 2010)
Ans. Stacks : A stack is a list of elements in which an element may be inserted or
deleted only at one end, called the top of the stack. This means, in particular, that elements
are removed from a stack in the reverse order of that in which they were inserted into the
stack.
Special terminology is used for two basic operations associated with stacks :
(a) “Push” is the term used to insert an element into a stack.
(b) “Pop” is the term used to delete an element from a stack.
PUSH (STACK, TOP, MAXSTK, ITEM)
This procedure pushes an ITEM onto a stack.
1. [stack already filled?] _
If TOP = MAXSTK, then : Print : OVERFLOW and Return.

Stacks and QU=

by 1]
_ TOP + 1 [Increases Top . -
2. Set .SI?APCKT(TOP) = ITEM [Inserts ITEM in new TOP position]
3. Set

Return.
top (STACK, TOP, ITEM)
This procedure deletes the top ele .
1. [Stack has an item to be removed?] P
If TOP = 0, then : Print : UNDEEFLOW, an , t. —
2. Set ITEM = STACK [TOP]. [Assigns TOP element to
3. Set TOP = TOP — 1 . [Decreases Top by 1]

4. Return.
. Push an Item into Stack :

* C implementation of pop algorithm *. _ ’ L
:nl go];ngnt stack [ ], int stack — top) / * stack — top is a local variable indicating top c

ment of STACK and assigns it to the variable ITEM.

stack * /

{int item ;
if (stack_top <10)
{ printf (“\ n slack underflow”) ;
return - 1 ;
}
else
{ item = stack [stack — top] ;
stack - top ....... ;
top = stack — top ; / * update global variable
top * /
return item ;

}
}
POP from stack :

/* C implementation of push algorithm * /
int Push (int stack [ ], int stack — top, int maxstack, int item)
{ if (stack — top = = maxstack)
{  printf (" \n stack overflow") ;
return — 1 .
}

else { stack — top ++ ;
stack [stack — top] = item :

" e
g



- e p

((

' Ay + |"|)_ AY O L
1 May 2003] Lo b
(«

Ssion js -
(d+e)+f)*(gf’;)

((a -+ b) R ?S!fix E‘xDr-e

(
= ((ab+) 4
£ - C * (de - (
= ((@b+) + (cde + :r)): ff)* ) A (« A
= ((ab + cde + * wy i f ). (gh+) + (((+ A
= (ab + cde + * )* lghs) B (((+ AB
= + f+) * (gh+) AB
Th (@b + cde + * ; & *
e prefix expression i +*+f+gh+7) . « AB+
((a+b)+C‘(d+e) 'S D (« - AB+D.
='{{+ o it ) ( AB+D*
= {(+ab) + ¢ * (+de) + ) * (+gh) 1 0 AB+D*
= ((+ab) + (* ¢ + de) + f) * (+gh) ( (T ( AB+D*
= ((++ ab * c + de) + f) * (+gh) E (T( AB+D'E
= (+++ ab ~ c + def) * (+gh) - {1t AB+D’E
= (* +++ ab * ¢ + def + gh) F ' (- AB + D" EF
Q 27. Wri g : ) (7 AB + D*EF —
. Write an algorithm to convert infix expression to postfix expression. Giy ) AB + D*EF-T
e example and apply algorithm. (PTU, May 2007
Ans. POLISH (Q, P) - Post fix expressison is :
1. Push "("onto STACK & add")" to end of Q. AB+D*EF-T
2. Scan 'Q' from left to right and repeat steps 3 10 6 for each element of until STACK Q 28. Convert the following infix expression to postfix.
A+(B*C-(D/ETF)*G)"H (PTU, Dec. 2007)

Ans. Q:A+(B*C-(D/ETF)*"G)"H

empty.
3. If an operand is encountered, add it X) to P- X
n & orko Stack. A+ (B*C=(DIE F )y * G ) - H)
4. If a left parenthesis IS encountered, push it on! (1) @ @ @ 6 6 () @ @ 00Nt (14)(15) (16) (17) (18) (19) (20)
The elements of Q have now been labelled from left to right for easy reference. The
nd of the string P as each element of Q is scanned.

encountered, then :
perator which has samé ¢diagram showss status of STACK a
1 Each operand is simply added to P and does not change STACK.

5. If an operator X is

(i) Repeatedly POP from STACK and add to F each 0
B! procedence n ® - 2. The subtraction operator (=) in row 7 sends * from STACK to P before it (=) ¥
' pushed onto STACK.
3. The right paranthesis in row 14 sends T and then / from STACK to P, and thel

thesis from TOP of the STACK.

removes the left paren
+ from STACK to P and the

(i) Add (D to stack e, e’ )
hesis is encoun i : ) 1t parenthe

arent dd to P each operator until a left P 4. The right paranthesis in row 20 sends * and thus

s from TOP of the STACK.

If a right P a
° (i) Fiepeated!y pop from sTACK and removed left paranthesi
is encoumefed- s After step 20 is executed, the STACK is empty one
.. gemove theé left paren : P:ABC*DEFT/G*-H"+
(”) which is requierd postfix equivalent of Q.

- it s Ry



ay function in
plate from the

v
LOAD> Data Structure & Alg°rithms
Symp nd Queues
ol SCannegy Expression P Stacksand x ————

(1) A STACK
(@) + ( :
@) ( (f:( .
G 3
o
gg;c ;+§_ ABC*
®) ( (=g ABC®
(9)1:(3 (i =~y ABC*D
(1o s (b= ABC*D
&l Co{l ABC*DE
() E (+(-( ABC*DE
) (+(=-¢7T ABC*DEF
W F (+(=¢1 ABC*DEF1/
(14) ) (%= ABC*DEFT/
L . (+(=* ABC*DEF1/G
(16) (=t ABC*DEF?T/G*-
(17) ) i ABC*DEF1/G"-
(18) * A ABC*DEFT/G*-H
(19) H (™ ABC*DEFT/G*-H
(20) ) .y

Q 29. Write the Postfix notation for the following expression :
(A+B)*C-(D-E)AF. (PTU, May 2011)
Ans. Postfix notation of (A+B)*C-(D-E)AFis equal to AB + C* DE — FA
Q 30. Write any two applications of stack.
Ans. The two applications of stack are :
1. Towers of hanoi
2. Recursion
3. Conversion of expression.
Q 31. Write down the algorithms for various operations possible on stacks.
(PTU, May 2011
Ans. Stacks : Stacks is a linear structure which consist of list of data items in whicl

insertions and deletion are made only at one end called the top of the stack. Also, arc the dat
item or elements can be removed or added only from the top, it is defined as LAST-IN-FIRST
OUT (LIFO) structure. The terms used in operation associated with stack are PUSH and POP.

1. Push : Push is used to insert an element into a stack.
2. Pop : Pop is used to delete an element from a stack.

The stack structure functions in the same manner as a spring Ioaded' stack of plates ¢
canteen. When we add plates by pushing the top of the stack and to remo¥

top of the stack the spring causes the next plate to pop up.

37

ntation of Stacks : '
Flep:fe:fe following 4 elements are pushed into empty stack
e.g.

o ,6,8,10,12

e stack is written as : 4,6,8, 10,12

then th ent is 12 which is at the top of the stack.

where right most eler!ﬁ :
It shown is the following fig.

4 6 8 10 12| — ‘ \ \
1 2 3 4 5(top) n—1 n

Algorithm :
Step 1. If top = MAX

Print “Overflow” and return
Step 2. Settop = top + 1 Shows incremgnt of value. -
Step 3. Set stack (top) = D It adds data in the new top position

Step 4. Return
Alg‘::rithm for the pop (Deletion of element from the STACK)

Step 1. Iftop =0
Print “Underflow” and return — It shows that stack has no value to remove

Step 2. Set D = Stack (Pop) It assign the top element of the stack to DATA
Step 3. Set top = top = 1 Increases the value of pointer variable top.
Step 4. Return.

Q 32. What are the various operations an stack?

Ans. There are two operations can be applied an stack :

(a) PUSH operation

(b) POP operation

(a) Push Operation : Push means to insert a new item at top of stack. In executing the

(PTU, May 2011) ,cedure PUSH, we must first check whether there is a space in stack to insert new item or
not. If there is a space then we insert new element otherwise the condition of overfiow occurs.

(b) Pop Operation : Pop means to delete the top element from stack. In Pop operation

one must first test whether there is an element in the stack to be deleted., if not then we hav:
“the condition known as underfiow.

Q 33. Convert the infix notation 1+ (23-@a5 1 6)*7) *8 into postfix notation.
(PTU, Dec. 201

Ans. Q is the infix notation and transform it into its equivalent postfix expression P.

First we push “(" onto stack, and then we add “)" to the end of Q to obtain.

Q:1+(23-(@451 6)*7) *8)

(1) (2) (3) (4) (8) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20)

The elements of Q have now labeled from left to right. Table shows the status of st:

and of the string P as each element of Q is scanned.

After step 20 is executed, the stack is empty and.
P 1123 4561 /7 - g* &



Which :
Is
e requireq postfix equivalent of Q-

28 Data Structure & a
QD) a lgg "
m ctacks and Queues
11 ) _._.————___—___——___
—_’/—_‘-’_—__.__‘_h\ -

39

s -_._._._._____,_._—-
M : Ymbog| Scanned | stack | fxp
2 A
@ . 1
(5) - o &
i % 12 P — =
(6} 3 (+ (' 123 | G _L_J
9 L = L=
© . (+ ( we Q 35. List types of queues. ) F XV Why 2904
(1‘)3) 4 (= ( 123*4 Aiid -The queues are of the types : simple queue, circular queue, dequeue and priority
: 7 . .
o 1234
(11) s (+( {;’! 123 * 45 queues. i . toioed by a circular array with N memory cells, When an
(12) 1 i 23*45 Q 36. A deque IS mamtamef y RIGHT 2 variables to indicate 2 ends of a
(13) ((=(/1 1 element is added to deque, how is LEFTand
) 6 + =01 123*456 disaiie changed? (PTU, Dec. 2004)
((1 ;) 1 + (- 123*4567T/ eq Ans. If the element is added on the left, then LEFT is dgcrgased by 1 (mod N). On the
(16; , (+ (- 123*4561/ other hand, if the element is added on the right, then RIGHT is increased by 1 (mod N).
17y ) L 123:456:”, Q 37. What are limitations of queues? @PTU. Dec. 2005)
(18) + - (+ 123'456 7 : Ans. 1. The major drawbacks is that one cannot have access to middle element, i.e.
(19) 8 (+* 123456 1/7° - insertion and deletion can take place only at the two ends called front end and rear end.
(20 (+* 123*4561/7*-8 5. In this case, last element in a queue will be last element out of queue i.e. if we want
) ) * 123°45671/7"-8"+ to access only last element, we have to transverse all the elements before it.
Q 38. What is priority queue. (PTU, Dec. 2009 ; May 2014, 2006)

Q 34. Briefly explain Tower of H
anoi problem. (PTU, Dec. 2011 S : i
l{ms. The Tower of Hanoi puzzle was invented by the French mathematician Edouar : AT’ Prl.or!:y: quzu: s tze C.o“em.lon OF ISIGUES. wuv) o8 RRN R o Daak
Lucas ln- 1.‘._!83. We are given a tower of eight disks (initially four in the applet below), initialy ?rsoagr;e;: a. pnon‘y a-n VRGBTSR FmRah am Eheid and presessal noes
stacked in increasing size on one of three pegs. The objective is to transfer the entire tower m ? ov:: ge,‘:rf:n't of higher priority i d bef iori
tf) one of the other pegs (the rightmost one in the applet below), moving only one disk ata o Two elements w?th s;rr: el e e!gment of |ow?r pru:_mly.
PERaiabe i e oo i : oo € priority are processes according to order in which they
. ed to
The puzzle is well known to students of Computer Science since it appears in virtualy ; s
any introductory text on data structures or algorithms. Its solution touches on two important . (A:nasg' 1w_|r-|r:e "°?"“ apIp lication of qusues, (55 O Wy S0)
_ - 1. The main application of queues is that it is used in traversing the graph using
Breadth Fnr;t ?earch (BFS) i.e. to find shortest path between two vertices.
2. Priority queues are used to assign priority s.t., an element of higher priarity i
Processed before any element of lower priority.

topics :
O Recursive functions and stacks

O Recurrence relations
The applet has several controls that allow one to select the number of disks and obsene
the soluton in a Fast of Slow manner. To solve the puzzle drag disks fron one peg to another Q 40. What are priority queues? How they are implemented? (PTU, Dec. 2007

following the rules. You can drop a disk on to a peg.when its center is sufficiently close to the i Whig:s.; Priority Queues: A priority queue is a collection of elements such that the ords
center of the peg. The applet expects you to move disks from the leftmost peg to the rightmos! q eAemeS are deleted and processed comes from the following rules :
. Ane ; TR
ement of higher priority is processed before any element of lower priority.

peg.



——_
40 41
Data Structure & Algoriy,
LO3D> M nd Queues
2 ‘ 5 : Stacks a - (PTU, May 2010
M - _ossed accordind t7deF 1, Witk the, 43. What is a circular queue? ted in a circular fashion so rhat |a}t
are addeq tnts With same priority are proces 2 'In circular queues the elements are represenied in f d ;
ay hThere re Vario:sma g ity queue in memory : i Rt One, A:,::t.s back to the first node. In circular .queue. th? “;Stz)rr“:oar: :)hea r:teni(:-‘. :xl?rse:;em: s
deletip, - ther yse ways. o rmidaking & pﬂom}‘or difficulty in adding elements to o, .nOde . at the very first location of the queue if the last GC rati 9 b rf p% on
) 9 the, from a pr? Fflumple queues. The easeon irE,’J,.esenlatia:m that one choosen_ is c.’one ueue array of 6 elements. Insertion and .deletl'on opera |:::r:. can be p.e ormed on
*ample * The pri:::; c? i de?}ny debpe’gvdvs_ 'qr;il:r?queue The following figures illustrate the insertion and deletion operations.
Ueue is shown be . ci :
Qs) Qo]
Front
Q4] Q[1)
Node
[WFoTpAn] L]
Priori ue with 4 node
Q 41. What ; i AR =" a3 Q[2]
Ang IS a queue? Discuss operations on queue. (PTU, Dec. 2007)

Queue : A Queue is a linear data structure in which new elements are inserteq al
d elements are dele

fe) ; ted from the other end.
) Peration on Queue A number of operation can be performed on a queue. Thesg
fUnCIIOF.IS are :

Enqueue : Useq o in
D

one end an

sert a new element to rear of queue.
€queue : Used to remove an existing element to front of queue.
Create : Used to create an empty queue.

Destroy : Used to delete all the element of the queue.
Isempty : Check and report is queue empty or not.
Isfull : Check and report is queue full or not.
Also perform front peek and rear peek.

Q 42. What are Dequeues? How are they maintained in memory? (PTU, May 2005)
Ans. Dequeue is a linear list in which elements can be added or removed at either end,
it not in the middle.

Dequeues is maintained by a circular queue with pointers ‘LEFT’ and ‘RIGHT", which
nts to 2 ends of a dequeue. The variations of dequeue are -

(i) P restricted dequeue : In this type, insertion can only be possible at one end, bul
stion can be done on both ends.

(ii) O/P restricted dequeue : In this type, deletion js possible only at one end, o
rtion can be done at both ends.

A circular queue after
inserting 10, 8, 12, 25

A circular queue after
deletion of 10, 8

Q 44. What are queues? Compare with dequeues. How are they represented in

memory? (PTU, Dec. 2004)
OR

How queues are represented in memory? (PTU, May 2019 ; Dec. 2008)
Ans. A queue is a linear list of elements in which deletions can take place only at one
end called the front and insertion can take place only at the other end called the rear end.

Queues are also called FIFO, since Ist element in a queue will be Ist element out of
queue.

1 2
1L 2 4
Front = F+1 Rear + =1

With every insertion, rear is incremented by 1. With every deletion, front is incremente
by 1.

ngueues : Itis a linear list in which elements can be added or removed at either en
bul. not |nlthe middle. Dequeue is maintained by circular array with pointers ‘LEFT' and ‘RIGH
which points to the two ends of a deque. The vanations of dequeue are :

(i) !nput restricted dequeues : In this type, insertion can only be possible at one ¢
but deletion can be done on both the ends.

B



| LY . 11 T4
3 //d&‘etion 15 pOSblu s
ueues:

(ii) F)IP restricted dequeues : In this type of ded
nd, but inserion can be done at boih the €%

n hOW aré

. es represented b
: priontv quey (PTU, Dec. 2005\;
~ Q45. What are priority queues? Explal ement has bee
BTG, MITRYSS quch that each © cessed €O !
Ans. Priority queue is the collection of plement are @ and Pr° e
assigned a priority and the order in which 1 elements .
from following rules : any element of Iowgr prlc?rlty,
1. An element of higher priority is processed pefor 0 dind to order In which they
2. Two elements with same priority aré PfOGessEd ‘
were added 1o the queue. ,
Array representation will appear in its own
It uses separate queue for each level of priority- Eac such :;i‘;‘e
circular array and must have its own pair of points .aONT and :
€.9. FRONT REAR

1F 13

24 2|6 |

3|2 3|2
410} 410
5| 6 51|
12345

1A B C

2\ D E

3l G

4

5|K H

Q 46. Write suitable routines to perform insertion and deletion operations In @
queue.

Ans. The operations of insertion and deletion in a queue as f (PTU, May 2009
An algorithm for insertion of an element in a queue. ollows :
Q INSERT(QUEVE, N, FRONT, REAR, ITEM)
step 1: [Queue alread filled?)

If FRONT = 1 and REAR = N or if FRON

T=

Write : OVERFLOW and Retur REAR + 1, then :

Step 2 * [Find new value of REAR] ‘

If FRONT = NULL then [queue initiall
Set FRONT = 1 and REAR = 1 Y empty]



Stacks and Queues 43
— Elseif REAR = N then

Set REAR = 1

Else

Set REAR = REAR +1
[End of If data structure] . .
step 3: Set QUEUE [REAR] = ITEM This insert new line

Step 4 : Return.
An algorithm for deletion from queue
QUEUE (QUEUE, N, FRONT, REAR, ITEM)

- 1]
Step 1: [Queue already empty
If FRONT = NULL the write UNDERFLOW and Return.

Step 2: Set ITEM = QUEUE [FRONT]
Step 3 : [Find new value of FRONT]
If FRONT = REAR then
Set FRONT = NULL and REAR = NULL
Else if FRONT = N then
set FRONT =1
Else
Set FRONT = FRONT + 1
- [End of If structure]
Step 4 : Return.

Q 47. What are the various operations possible on queue? Explain the algorithm
‘for each of them. _ (PTU, May 2010)

Ans. A queue is logically a first-in first-out (FIFO) linear data structure. It is a
homogeneous collection of elements in which new elements are called at one end called
rear, and the existing elements are deleted from other end called front.

The basic operations that can be performed on queue are :

1. Insert (add) an element to the queue.

2. Delete (remove) an element from a queue.

Let Q be the array of some specified size say size.

(a) Following in an algorithm for inserting an element into the queue :
1. Initialize front = 0, rear = —1

2. Input the value to be inserted and assign to variable “data”.
3. If (Rear > = SIZE)

(a) Display “Queue overflow”
(b) Exit.

4. Else

(a) Rear = Rear + 1

Q [Rear] = data

6. Exit.

o



(b) &
Ollow; .

1 Wi Z
If (Re ':g IS an algan LORD> Data Structure & Algorith,
(&) =22 < Fropy SOMthm for delet g

(b) ront — 8 r deleting an element from queue

DIS =Y, rear — :
pla i =

(©) Exiy ) The QUeu1 .

Else e is empty”

Daty
3.. FrOnt -_2 [Front]
4. B, O+

ue.

Q 48
- Expl
€ pro
cedure for insertion of an item into @ qué

Ans S
=+ SUppose
we want to |
to insert an element ITEM into a queue att

Occupy th
ela
St part of the array, i.e. when REAR = N
QUEUE [N] in aray with thig

As the
assumpti array Qu i .
ption, we insenE,L-:Eh'As circular, i.e. QUEUE [i] comes‘after
into queue by assigning ITEM 10 QUEUE [1]. Thus, instead of

increasin
g REARto N + 1 we reset
) et REAR = 1
Now whe(:UEUE e
: ever an el is
ement is added to queue, the value of REAR is increased by 1, ie

- REAR = REAR + 1
e condition FRONT = indi
:NSQUEUE (FRONTTnEﬁ:f-;SgﬁaE;ES that queues is empty-
. If FRONT =1, REAR = N, then :
Write : overflow & Exit. ' -
2. |f FRONT = REAR = NULL -
Set FRONT = REAR = 1.
ELSE IF REAR = N & FRONT = 1,
Set REAR =1
ELSE
Set REAR = REAR + 1

3. Set QUEUE [REAR]= ITEM

4. Exit.

Q 49. Explai
circular queue.
linea

rtion can take

queues with examples and write an algorithm 10
(PTU, May 2005)

|etions can take place only at on®
r end called rear end.

n various types of

nts in which de

r list of elemeé
only at othe

Ans-
places

nd called front and insé€

”” - —

stacks and Queues

Q [1] co
FRONT = 1 instead of increasin

_then, Front =

been assigned a priority &
from following rules.

mory location. In this case,

e the me
eted, we reset

Types of queues :
d to better utiliz
N and element is del

1. Circular queue : These are use
ONT =

mes after Q [N], i.e. last element. If FR
g FRONT=N+1.

Rear=4
empty. Suppose we have O

1. each element has
d comes

nly 1 element,

Front= 1
Null, their, queue is

If Front = Null and Rear =

Rear = Null.
queue is the collecti

(ii) Priority Queues : Priority
nd the order in which element

on of elements §
s are deleted and processe

ent of lower priority.

ocessed before any elem
to order in which they

of higher priority is Pr
are processed according

1. An element
me priority

2. Two glements with sa
were added to queue.

Start

- .
Al e[ —elelx

Node

el PR

w* when 'X' has priority greater than »y' or both have san

A node ‘X' preceeds a node
_priority, but X' was added to list before g i
inear list in which elements can be added or removed at eith
ters 'LEF

py a circular queue with poin

3, Dequeues : itisal
e of two types

end, but not in the middle. Dequeu
and ‘RIGHT which points to two en
1. I/P restricted dequeue
2. O/P restricted dequeue.
QINS (Q, F, R, ITEM)
1. fF=1and R=N,then:
write : overflow and Retumn
2. IfF=NULLthen:
SetF=1andR=1
Else if R =N, then :
Set R = 1 [concept of circular array)

Else
SetR= R+ 1

¢ is maintained
ds of dequeue. These ar




46

m
4. Q

[R) =
Return_ ] ,TEM

Q 50, p,

LO3D> Data Structure & Algorithms

¥in le link list?
e qgeua. How queues are implemented using doub B(PTU, N0

s. : ;
end cajley f‘:\DQUeue 'S @ linear list of elements in which deletions can take place only at one
L insertion can take place only at other end called rear end.

Rear
Front

list in ﬁ::s;:)es,'mplememed using Double link list are called dequeues. A dgqueue isa hnea}r
Maintaineq j °ments can be added or removed at either end but not in rmdc.ile. Dejqueue is
ends of ¢ ' Memory by a circylar array with pointers LEFT and RIGHT, which point to two
dequeue equeus. Here DEQUE (1] comes after DEQUE [N). There are two variations of a

1. IP restricted dequeue :
t but allows deletions at both
2. O/p restricted dequeue :
allows insertions at both ends of th

Q 51. What are the fr
Ans. A queue is a seq

the i It is a dequeue which allows insertions at only one end of
= ends of list. '
It is a dequeue which allows deletions at only one end but

e list.

ont and rear pointers of queue? (PTU, May 2013, 2011)

uence in which items are inserted at one end (called the rear of

the queue) and deleted from the other end (the front). Fig. shows an initially empty queue in

-Which the items a and b are inserted. Then a is removed ¢ and d are inserted and b is

removed.Because items are always removed in the order in which they are inserted, a queue
is sometimes called a FIFO (first in, first out) buffer.

a—py [«
neEnce

! Rear ptr

W
o
(]

tion Resulting Queue
Operatio .

(define q (move-queue)
(insert — queue I ga)a

erations
I o' b) ab Queue op
(insert — queue * @ )

Stacks and Queues 47

(delete — queue 1q)b

(insert — queue 1q'c) be

(insert — queue ! q' d) bed

(delete — queue lq)cd

Q 52. Define queue. What are its various types? s
Ans. A queue is an ordered collection of items from which items may be deleted at one

d (called the front of the queue) and into which items may be inserted at the other en d
en
(called the rear of the queue).

Types of Queue : There are four types of queue :
1. Normal Queue/Linear Queue

2. Circular Queue

3. De-Queue

4, Priority Queue.

Q 53. Explain the various features of queue.

Ans. 1. A list structure will two access points called the front and rear.
2. All insertions occur at the rear and deletions occurs at the front,

3. Varying length.

4. Homogeneous components.

5. It has a (FIFO) first. In, first-out characteristic.

Q 54. How queues can be represented?

Ans. The queues can be represented or stored in computer memory by two ways :
1. By using arrays

2. By using linked list.

Q 55. Explain linear queue.

Ans. In linear queue no circular operation is performed that is last position is full ¢

first cell is empty even then first position will not be occupied by an element. In linear qus
the overflow condition occurs when FRONT = 1 and REAR = N.

iy

Insertion rear

perations performed on circular queue?
are performed an circular queue :

Deletion front
Q 56. What are the various o
Ans. The following operations
1. Create operation
2. Enqueue operation/insertion
3. Dequeue operation/deletion.

Q 57. Write insertion and deletion algorithms an linear queue.
Ans. Insertion/Enqueue Algorithm :

Enqueue (queue, item)



48

1.

2.

3.
4.
5.

Check whether the queue is full of M
Mmessage

‘Queue Overflow” and

9oto step 5, otherwise go to step 2-
Increment the value of ‘rear as
Store the ‘item’ at rear postion as queue [rear]
Set front = o only when (front = = =1)

Exit.

DeletionlDequeue Algorithm :
Dequeue (Queue)

Here ‘queue’ contains the base address of the array quet
Check whether the queue is empty or not. If the queus
message “Queue underflow” and go to step 4, otherwise

Access the front element as item = queue [front] '

1.

2

3. Reset the value of front and rear if (front = rear) ; oth
front = front + 1 .

4. Exit.

insertion of a node in a queue.

Ans. Queue : A queue is a linear data structure in which new elements are inserted 3

ot, If the quet

g Liiiest o~
e is empty then flash an Sirgy

are performed i.e. starting pointer where push and pop operations
b

can be performed easily.

= jtem

e.
is empty then flash an ey

go to step 2.

erwise increment the va|ye o

Q 58. What are queues and their applications? Write an algorithm to demonstra,
(PTU, May 2019 ; Dec. 2014)

one end and elements are deleted from the other end.

Stacks and Queues

49

Step 3: Set QUEUE [REAR] = ITEM This insert new line

Step 4 : Return.

Q 59. What is a top pointer of stack?
* Ans. Top pointer is a pointer to the stack from where operations

(PTU, May 2013

Top pointer 2

Q 60. Post-fix Expression. -
Ans. In postfix expression if operator symbol is placed after its two Ope(arand'sh:iaiys ::11':3

postfix or reverse polish expression and this way of writing an expression is called as postfix

or reverse polish notation of an expression.

Q 61. Linked representation of queue. (PTU, May 2014)

Front

F@lj—f

Ans.

iy

New node

(PTU, Dec. 2014)

Ans. It is better than a normal queue because in this we can effectively utilize the memory
space. If we have a normal queue and have deleted some elements from there then empty
space is created there and even if the queue has empty cells than also we cannot insert any
new element because the insertion has to be done from one side only and deletion has to be

Q 62. What is a circular queue and its use ?

done from another side.

Applications :

1. The main application of queues is that it is used in traversing the graph using Breadi

First Search (BFS) i.e. to find shorlest path between two vertices.

2. Priority queues are used to assign priority s.t., an element of higher priority is

Application : Circular queue is used in VB.net
Polynomials

Processed before any element of lower priority.
An algorithm for insertion of an element in a queue,
Q INSERT(QUEUE, N, FRONT, REAR, ITEM)

Step 1:

[Queue alread filled?]

Write : OVERFLOW and Return
Step 2 : [Find new value of REAR]

If FRONT = 1 and REAR = N or if FRONT = REAR + 1, then :

If FRONT = NULL then [queue initially empty]

Set FRONT = 1 and REAR = 1
Else if REAR = N then

Set REAR =1

Else '

Set REAR = REAR +1

[End of If data structure]

Sequential atomic operations
Q63. Evaluate: (a)1243+*41- (b)257*14-6+ (PTU, Dec. 2014
Ans.(a) 1243 +* 41 - .(b)257*14-6+
Token read | Content of stack | Token read | Content of stack
1 1 25 25
24 1,24 7 287
3 1,24,3 * 175
+ 1, 27 14 175, 14
g 27 - 161
41 27, 41 6 161, 6
- 14 + 167
) 14 ) 167

Q 64. What is the usage of stack in recursive algorithm implementation ?
(PTU' Dﬂc- 2l|

: d
Ans. In recursive algorithms, stack data structures is used to store the return adc



LO3DY Data Structure g A'Qon
es of all parameterg o5

So

When
to the i "eCursive call js encountered and 8lso t

' *;fsrem State of the procedure.
- What is the postfix form of

o store the valt

fix expression ?

re
the following P (PTU
:  May 2y

Ans - *+ab-cd.
¢ ab+cg-r »opping ele
anij Q 66. Assume that a queue is available for pushing am: ﬁutZquenc:‘ = vy
if s PUt Sequence a, b, ¢, (c be the first element), give the O Of elemg,
the rig 1 b, ¢, (c bethefi first to be popped from the queuye,

':.tmOSt element given above is the (PTU, gy :
013

e [ATeTe]
[8]c
Front Rear
cba

eleme‘:t:?r:/hat are Circular Queues ? Write down routines for inserting and delety,
Ans Cim a circular queue implemented using arrays. (PTU, May 2015
Stati;: J:Ular Queue : Refer to Q.No. 43 .
few e?emue have a very big drawback that once the queue s FULL, even thoygh W
*40d anyimors a eents form the “front” and relieve some occupied space, We are not ablg
The solution fies _mems as u?e "rgar' has already reached the Oyeue's rear most Positioy
will become the ::’ a Cliueue JT which the moment “rear” reaches its end; the “first” elemey
structure fike thy q_ eue«_.s new “rear”. This type of queue i§ known as circular queue having;
IS In which, once the Queue is full the “first” element of the Queue becomg

the “Re i
e ar” most element, if and only if the “Front” has moved forward;
Sert(queue, n, front, rear, item)

T'I:h:; ﬁ;o;eft;re inserts an eferr?em item into a queue.
; =1 and rear = n, or if front = rear + 1, then :
write : overfiow, and return I '
2. [find new value of rear]
If front = NULL, then - [queue initially empty.]
set front = 1 and rear = 1. >
Eise if rear = n, then:
Set rear = 1.
Else :
Set rear = rear + 1.
[end of structure.]
3. Set queuelrear] = item. [this inserts new g
4. Return.
delete(queue, n, front, rear, item)
This procedure deletes an element from a queue
1. [queue already empty?]
if front = NULL, then :
write : underflow, and return.

2. Set item = queuelfront].

delete

ement.]

and assigns jt 1o the variable item.

. other end called front end. The meaning of tront

siacksand Queves "

3. [find new value of front].
If front = rear, then : [queue has only one element to start].

Set front = NULL and rear = NULL.
Else if front = n, then :

Set front = 1.

Else :

Set front = front + 1.

[end of structure.]..

4. Return.
Q 68. Explain the terms Front and Rear for queue.

Ans. A queue is a non-primitive, linear data
structure, and a sub-class of list data structure. Jt
is an ordered, homogeneous collection of
elements in which elements are appended at one
end called rear end and elements are deleted at

(PTU, May 2015)
[;?— Em:znnngi
| 1 ’I/
T T S
AT
\
| Front |

is face side and rear means back side.
. Queue

Q 69. Explain application of Stack in recursive functions with exampie.
(PTU, May 2015)
Ans. Recursive function uses stack. A stack is a Last In First Out (LFO) cata structure
This means that the last data item to get stored on the stack (often calied push operation) is
the first data item to get out of the stack (often calied pop operation). This s samiar to that of
stacking plates-the last plate that goes on the stack is the frsstonetogetout of 1t
O When function call itself, a new set of variables and parameters ar2 siored on the
stack and the function code is executed from the top win thesa new vanables
O As each recursive call returns, the old variables and parameters ceclared n the
function are removed from the stack, and executiof resumes mmadataly after the
recursive call inside the function.
O The recursive function must have a conditional statement. such as ¢ somewhere !
force the function to return without the recursive call beng exaculed
We can also say that, in the recursive function the call 10 seff functon is made
recursive call means invoking the push operation, and when the control is retumed fror
recursive function to main the pop operation is supposed 10 be performed The recurs:.
uses the concept of internal stack.
Q 70. What is the role of Priority queue in operating system design ?
(PTU, Dec. 201
Ans. The typical example of priotity queue IS schedubng the LS in operating syst
Priority queues are used in well-known computer science application s job schedu
algorithms in the operating system design where the job or tasks with highest pronties 1
10 be processed first. Typically operating system allocates pronty to jobs The jobs are pio
In the queue and position of the job in priority queue determines thewr prionty There are i
kinds of jobs.



—
52
1. Real time LORD Data Structure & Algorithn,
. B stacks and Queues 53
2. Otherwise
a. ITEM : = QUEUE (FRONT);

2. Foreground

3. Background
The operating system always schedules the real time job fi

pending then it schedules foreground jobs. Lastly it schedules
Q 71. Why do we need Queues ? Write the algorithm

rst. If there is no re
the background jo
s/programs for Emptyq

. (PTU' Dec, 201 )

al ﬂl‘ne l%

FullQ, InsertQ and DeleteQ operations.
our everyday |itg W

Ans. A queue is logically a first in first out (FIFO) type of list. In
come across many situations where we ought to wait for the desired servi
-to get into a waiting line for our turn to get serviced. This waiting queue ¢
queue. Queue means a line. For example : At the railway reservation booth, we Ray,
into the reservation queue. Thus a queue is a non-primitive data structure. It is an hom,
collection of elements in which new elements are added at one end called the rea

the existing elements are deleted from other end called the front end :

1.

4.

This algorithm is used to check whether a queue is empty or not

EMPTY-CHECK (QUEUE, FRONT, REAR, EMPTY)
1. If (FRONT=REAR + 1) then
“a.EMPTY : =true;
2. Otherwise
a . EMPTY.: = false,
3. Return ,
. This-algorithm is used to check whether a queue is full or not.
FULL-CHECK (QUEUE, FRONT, REAR, MAX, FULL)
1. If (REAR = MAX) then
a. FULL : = true;
- 2. Otherwise
a. FULL : = false;
3. Return;
This algorithm is used to add or insert item to Queue.
INSERT - ITEH (QUEUE, FRONT, REAR, MAX, ITEM)
1. If (REAR = MAX) then ;
a. Display “Queue overflow”;
- - b.Returni” _
2. Otherwise
a. REAR : = REAR + 1;
_b. QUEUE (REAR) : = ITEM;
" 3. Return;
This algorithm.is used to delete an item from queue.

REMOVE - ITEM (QUEUE, FRONT, REAR, ITEM)
1. If (FRONT = REAR + 1) then
a. Display “Queue. underflow”;

b. Reksn;

ce, there we hav
an be thought of 4
Ogeneqyg
I end ang

then remove

b. FRONT : = FRONT + 1;

3. Return;
Q 72. If the characters ‘D’, ‘C’, ‘B’, ‘A’ are placed In a queue (in that order), and

d one at a time, in what order will they be removed ?  (PTU, May 2016)
Ans. DCBA .

Because As Queue follows FIFO structure. _
Q 73. Suppose we have a circular array implementation of the queue with ten

items in the queue stored at data [2] through data [11]. The current capacity |is 42,
where does the Insert method place the new entry In the array ?  (PTU, May 2016)

Ans. data [12]
Q 74. What are the different representations of stacks ? How recursion functions
(PTU, Dec. 2015)

can be implemented using stacks ?

Ans. There are two ways to represent stacks in memory :

1. Array representation (Static data structure)

2. Linked list representation (Dynamic data structure)
A function calling itself or a call to another function, which in tum calls the first function

is called a recursive function. These recursive function are executed using stacks. Return
address and all local variables and formal parameters of the called method will be stored intc
the stack. Whenever any method is called all the elements stored in the stack will be restorec

after a return is executed. Recursion is implemented using the data structure stack.

Q 75. Explain how stack is applied for evaluating an arithmetic expression.
(PTU, May 2017

Ans. Evaluating Arithmetic expressions :
1. In order to evaluate an expression, standard precedence rules for arithmetic expressic:

are applied.
2. The parenthesis are evaluate first followed by unary operator
3. When_ unparenthesized operator of the same parenthesis are evaluated, the order -
evaluation is from left to right except in the case of NOT (!), in which case the order is .

right to left. ' )
Q 76. Write an algorithm to convert infix to postfix expression and apply th:

same to convert the following expression from infix to postfix. _—
(a)(@a*b)+c/d (b)(((ab)-c)+(d*e)-(a"c) ) ‘(\PTU: May 20°
Ans. (a) (a*Db)+c/d (b) ((@b-c)+(de) :a~
(ab*) + c/d ((ab -é_- + l‘::_ ) - (e
B anc - o + dC — )
i B (PTU, May 207¢

W oA Azl
INIY @ W™

Q 77. Write the drawbacks of DQUEUES.
is to be insened!

Ans. With the DQUEUES a complication may arise
(a) When there is a overflow, that is, when an element
which is already full or b deleted from a Geque!

(b) Wh;nythet'e is underflow that is when an glement isto b

aad

which is empty.



Chapter
Linked List

55

_—

7 List -
Linked . A
ists are used in a wide variety of applications such as polynomial representation, addition

ol table creation, mailing lists, memory management efc.

Linked |
o 'of long positive integers, symb
& The memory locations that once were needed but become unnecessary and unused at

e later time are called the garbage.

som
QUESTION-ANSWERi\
s?

(PTU, Dec. 2004)

@ 1. What data structure operations can be applied to linked list

Ans. Data structure operations that can be applied to linked lists are :

3
Representation in memory, Algorithms of several operations

Traversing, Searching, Insertion into, Deletion from linked list ; Linked representation
1. Insertion

Singly linked lists
of Stack and Queue, Header nodes, Doubly linked list : Operations on it and algorithms
2. Deletion

analysis ; Circular Linked Lists : All' operations their algorithms and the complexity
3. Traversing
4. Searching (only linear searching).
Q 2. Which searching algorithms will you apply for a given item in S, when S is
(PTU, May 2005)

=F
available list and linked to the former list as required. On the other hand, whenever a

node is deleted from a linked list, it is added to the front of the availability list from where
it can be used for insertion purpose at some later stage.
5 Overflow occurs during the insert operation on a linked list when AVAIL = NULL. The
underflow occurs during the delete operation of linked list when HEAD = NULL.
‘the same data items, in two opposite orders.
. N/
2 =ﬁ‘ﬂﬁﬂ‘ﬂ= X
: . | pan
es contain three fietds : an integer value, the ink 10

Ans. In case of link list, only linear searching is applied. The worst case running time is

analysis.
POINTS TO REMEMBER @
\
stored as a linked list?
préportional to no. ‘n’ of elements in LIST, and average case running time is approximately

rtional to E. A binary search algorithm can’t be applied to a sorted link list, since there
(PTU, May 2005)

A linked list is a linear data structure containing of elements called nodes where each node
is composed of two parts : information part and a link part also called next pointer part.

IF A pointer to the first node is called a start or head pointer. It contains the address of the
first node of the linked list.
IS Linked list is a dynamic data structure as the size of the linked list is not fixed and may -propo
expand or shrink as nodes are inserted or deleted. ; . _ _ . .
¥ Traversing, searching, insertion, deletion and sorting are the key operations performeq s o way of indexing middie slement in tha list.
on a linked list. ) Q 3. What is underflow? _
Searching is a process of finding the location of the node containing the-desired item in Ans. The term underflow refers to the situation where one wants to .dellete data from a
the linked list. Search is considered successful if the node containing the item is found ~ data structure that is empty. The programmer may handle underflow by printing the message
' UNDERFLOW. Underflow will occur with our linked lists when START = NULL and there is a
deletion.
Q 4. What do you mean by doubly linked list? (PTU, May 2009)
: ' OR _
(PTU, May 2006
y-linked list is a linked data structure that consist‘s 0
tain references to the previou

What is double link list?
linked lists formed frot

Whenever a node is to be inserted into a linked list, the first node is taken of from the
Ans. In computer science, a doubl

a set of data records, each having two special link fields that con

o singly-

and unsuccessful otherwise.
The availability list or free storage list is maintained to keep track of the free nodes.
and to the next record in the sequence. It can be viewed as tw

A circular linked list is a linked list in which the last node in the list points to the first node
" w,"

A doubly linked list is a linear collection of elements called nodes such that each node
A doubly-linked list whose nod
to the previous node.

in-the list.
consists of three parts : information part, two pointers one pointing to the next node and
next node, and the link

other pointing to the previous node.
54



' 56

The two links allow walking along the list in either direction with equal ease. Compareq
"ngly-linked list, modifying a doubly-linked list usually requires changing ";"'9 POinters,
Sometimes simpler because there is no need to keep track of the address of the previgg

toas
but is
node.

Q 5. What is overflow? (PTU, May 2011 ; Dec. 20g5
Ans. Sometimes new data are to be inserted into a data structure but there is no
available space, i.e., the free-storage list is empty. This situation Is usually called overfloy,
The programmer may handle overflow by printing the message OVERFLOW.
Q 6. What are doubly linked list? How are they represented in memory?
' (PTU, May 2007)
Ans. A doubly link list is a linear collection of data elements, called nodes, where each
node ‘N’ is divided into three parts :
1. Info
2. FORW
3. BACK.

Thus, doubly link list can be traversed in two directions in forward direction from be
to end and in backward direction from end to beginning.

) L - 1]
]mm IFORW ] BA(ﬂ

Q 7. How linked lists are represented in memory? (PTU, May 2008)

Ans. Represented of linked list in memory : Let the list be a linked list. Then LIST will

be maintained in memory, unless otherwise specified or implied, as follows. First of all, LIST
requires two linear arrays,~ we have INFO and LINK — such that INFO [K] and LINK [K]
‘contain respectively, the information part and next pointer field of a node of LIST. As LIST
also requires a variable name — such as START - which contain the location of begining of list
and a next pointer sentinal denoted by NULL — which indicates end of the list. Since subscript

of the arrays INFO and LINK will usually be positive, we will use NULL = 0, unless otherwise
started.

Q 8. What is the header linked list?
OR

What are advantages and disadvantages of using

(PTU, Dec. 2007 : May 2005)

ginning

What are header linked lists?
header node?

LO=3D> Data Structure & Alg%r.'.'l"i _l_-"_"l‘i'ﬂfit

(PTU, May 2008)

57

i inter.
1. The grounded header list is a header list where the last node contain the null poin'
(et 1) header
2. The circular header list is a header list where the last node points back 10
node. (see fig. 2)

Start

Header
node
\mE

~

Fig. 1. Grounded header list

Start Hea[clier
LT~
J

Fig. 2. Circular header list

Advzniages :

1. The header linked lists are frequently used for maintaining polynomial in mernory.

2. The header linked list are performing traversing, searches, deleting and inserting
‘operations of elements in a list.

Q 9. What is need for Garbage collection? (PTU, Dec. 2010, 2004)

Ans. The operating system of a computer may periodically collect all the deleted space

“onto the free-siorage list. Any techniques which does this collection is called garbage collection.

Garbage collection usually takes place in two steps. First the computer runs through all lists,

tagging those cells which are currently in use and then the computer runs through the memory,
collecting all untagged space onto the free-storage list.

The garbage collection may take place where there is only some minimum amount of
space or no space at all left in the free-storage list, or when the CPU is idle and has time to do
the collection. Generally speaking, the garbage collection is invisible to the programmer. Any
further discussion about this topic of garbage collection lies beyond the scope of this text.

Q 10. Write an algorithm for insertion of an item after the given node in the linked
list. ~ (PTU, May 2008)

Ans. INSLOC (INFO, LINK, START, AVAIL, LOC, ITEM)

This algorithm inserts ITEM so that ITEM follows the node with location LOC or inserts
ITEM as first node when LOC = NULL.

Q 11. State the advantages of link list over array.

Ans. Advantages :

1. Less memory wastage : In an array, consecutive memory location are required so.
there is wastage of memory, but in case of link list, there is no memory wastage.

(PTU, May 2006)



58

LO3D> Data Structure & Algorithms

2. Traversing : In case of arrays, traversing is linear, but in link list, traversing depends
on the pointer used.

3. Insertion and Deletion :

Insertion and deletion in an array is difficult to perform,
ile in case of link list, it is easier due to the concept of ‘AVAIL'.

4. Memory allocation : Arrays require consecutive memory locations to be stored, but
nents in link list can be stored at any location.

The only disadvantages of link list over arrays is that it is difficult to implement, while
y is easy to implement and it is the simplest.

Q 12. What are the various operations possible on a singly link list? Explain with

diagrams. (PTU, May 2019, 2004)
Ans. Various operations possible on a singly link list are :

1. Insertion : Insertion is possible in case of link list in 3 cases.

Insertion at the beginning : It means inserting a node and given item at the beginning.

Start

[ NPT

{
4

Avail

with examples.

—

59
Linked List

5 i nd.
3. Insertion at the end : In this, we insert a node of given item in the e

Start

DM Wy O

(i) Deletion : Deletion means deleting a node of given location.
I Start

LOCP Loc

| \ x|

o R e DY

[

Q 13. What are the various operations possible on a doubly link list? Explain

(PTU, May 2010, 2004)
‘OR

What is linked list? Write an algorit

hm to insert, delete and modify operations on
double link list.

_ : (PTU, Dec. 2006)
Ans. A linked list is ‘a linear collection of data elements, called nodes, where the linear

order is given by means of pointers. Here, each node is divided into two parts : the first part
contains information of element and second part, called link part, contains the address of
next node in list. In the case of doubly linked list, link part contains two parts, FORW and

BACK. A pointer field FORW contains the location of the next node in the list and BACK
contains the location of the preceding node in the list.

1. Insertion in double link list

INSTWL (INFO, FORW, BACK, START, AVAIL, LOCA, LOCB, ITEM)
1. If AVAIL = NULL, then :

Write : overflow and exit.

2. SetNEW = AVAIL, AVAIL = FORW [AVAIL],
INFO [NEW] = ITEM,

)



LO3D> Data Structure & Algorithms

60

3. Set FORW [LOCA] = NEW, FORW [NEW] = LOCB

BACK [LOCB] = NEW, BACK, [NEW] = LOCA
4. Exit. E

2. Deletion in double link list
DELTWL (INFO, FORW, BACK, START, AVAIL, LOC)

1. Set FORW [BACK [LOC]] = FORW [LOC]
and BACK [FORW [LOC]] = BACK [LOC]
2. Set FORW [LOC] = AVAIL
AVAIL = LOC
3. Exit.
Q 14. Write and explain the algorithm for insertion of a node between itwo adjacent

nodes A and B of a 2-way reader list. (PTU, Dec. 2004)
Ans. Suppose we are given location LOCA and LOCB of adjacent nodes A and B in

LIST, and suppose we want to insert a given ITEM of information between nodes A and B,
Firstly, we remove the Ist node ‘N’ from AVAIL list, using the variable NEW to keep trace of this
ocation, and copy the data ITEM into node N, i.e.,

NEW = AVAIL, AVAIL = FORW [AVAIL], INFO [NEW] = ITEM

Now, the node ‘N’ with cantents ITEM is inserted into list by changing the following four

ointers.
FORW [LOCA] = NEW, FORW [NEW] = LOCB

BACK [LOCB] = NEW, BACK [NEW] = LOCA

Loc A Loc B
[ | fj'-ﬁ
\ Node A -~ | Node B
T T~ o ] T2l
[ LLZ ) \ __,.J-__"I_l__.{__ I < .
~ oy L/ \ I'. o
o \‘-\ \
New
N\
’/// ] ol |\
/ = 3 \
// 7 \ \
//.'// | \
: Node N |
|'./ ' [ 1 / |
W\ | Item » g /

STWL (INFO, FORW, BACK, START, AVAIL, LOCA, LOCB, ITEM)
If AVAIL = NULL, then
Write : overflow, and EXxit.

Linked List 61
2. SetNEW : = AVAIL v
AVAIL = FORW [AVAIL] ;
3. Set INFO [NEW] = ITEM #
4. Set FORW [LOCA] = NEW, FORW [NEW] = LOCB
BACK [LOCB] = NEW, BACK [NEW] = LOCA ™
5. Exit. \

main advantages of 2-way \ists?
(PTU, Dec. 2005)

can be transversed in two directions, i.e. ‘
de in the list, we now have immediale *

Q 15. What are two way lists? What are

Ans. A two-way list is a linear like list which
jorward and backward. For a given lacation of a no
ess to both next node and preceeding node.

In two-way list, each node is divided into tnhree parts ©
1. Info

2. BACK : Gives preceding node location.

3. FORW : gives next node location

acc

First

Suppose LOCA and LOCB are locations of nodes A and B in a two-way list. Then,
FORW [LOCA] = LOCB and BACK [LOCB] = LOCA

Advantages :

1. One have access to both preceding and succeeding node.

2. One can begin from last node to first node or first to list if desirable.

Q 16. Write an algorithm for insertion of an item at the beginning of the linkec

list. (PTU, Dec. 2008

Ans.

Start

Avail Free storage bist




| gl

F 62 LO3D> Data Structure & Algorithmg

Algorithm :
INS FIRST (INFO, LINK, START, AVAIL, ITEM)
This algorithm inserts ITEM as first node in the list.
Step 1. [OVERFLOW] It AVAIL = NULL then write : OVERFLOW and
Step 2. [Remove first node from AVAIL List]
Set NEW = AVAIL and AVAIL = LINK [AVAIL]
Step 3. Set INFO [NEW] = ITEM [Copies new data into new node]
Step 4. Set LINK [NEW] = START [New node now points to original first node]

Step 5. Set START = NEW [Change'is START so it points to new node]
Step 6. Exit. )
Q 17. Give an algorithm for creating and ins

Exit.

erting a node in a linked list.
(PTU, May 2009)
Ans. The following is algorithm for creating and inserting node is a linked list.

INSLOC (INFO,LINK, START, AVAIL, LOC, ITEM) .
Step 1: [OVERFLOW?] If AVAIL = NULL then write OVERFLOW and Exit.

Step 2 : [Remove first node from AVAIL list]
Set NEW = AVAIL and AVAIL = LINK [AVAIL].

Set INFO [NEW] = ITEM [copies new data into new node]
If LOC = NULL then [Insert as first node]
Set LINK [NEW] = START and START = NEW
Else [Inset after node with location LOC]
‘Set LINK [NEW] = LINK [LOC] and
LINK [LOC] = NEW
[End of If Structure]
Step 5 : Exit.
Q 18. What is a circular list? Write an algorithm for inserting a node at the front.:
~ (PTU, Dec. 2009)
Ans. A circular list is a linear list in which the last node contains the address of first
node. In some application, it is convenient to use circular linked list. A queue data structure
an be implemented using a circular linked list, with a single pointer “rear” as the front node

an be accessed through the rear node.

Step 3 :
Step 4 :

Rear
Front
[10 [ —— 20 o 15 o 12
Following is the algorithm for inserting a node at the front. -

Add front (NUM)

inked List
Link o

Step 1. Temp = New NODE [Acquire memory location for new node)

Step 2. Temp — info = NUM [store NUM in newly acquired node})

Step 3. Temp — link = Rear —» link [Store the address of first node into new node) f
Step 4. Rear — link = Temp [Store the address of new node into the rear node)

Rear

Lol F—lo [ F—{=TF—{=]

© Temp

Q 19. Write suitable routines to peﬂorm‘inse_rtion and deletion operati_oﬁs ina
linked list. (PTU, Dec. 2009)

. Ans. Suppose START is the first position in linked list. Let DATA be the element to be
Jnserted in the new node. POS is the position where thre new node is to be inserted. TEMP is
"a temporary pointer to hold the node address. TEMP is a temporary pointer to hold the node

address. Following is the algorithm to insert a node at any specified position :
1. Input DATA and POS to be inserted.
2. Initilise TEMP = START, and K = 0.
3. Repeat the step 3 while (K is less than POS)
(a) TEMP = TEMP — Next
(b) If (TEMP is equal to NULL)
() Display ‘Number of nodes i the list are less than position’

(ii) Exit.

() K=K+ 1

Creat a new node.

New node — Data = Data

New node — Next = TEMP — Next
TEMP — Next = New Node

. Exit.

Algorithm for deleting a node :

1. Input the DATA to be deleted.

2. If(START—DATA== DATA)

(a) TEMP = START

(b) START = START —» NEXT

(c) Free the node TEMP

(d) Exit
3. PTR=START

o .o O B

B L o




| i
64

4. While (PTR — Next — Next = NULL)
(a) If (PTR > NEXT — DATA = = DATA)
(i) TEMP = PTR — NEXT
(ii) PTR — Next = TEMP — Next
(iii) Set tree the node TEMP, which is deleted
(iv) Exit.
(b) PTR = PTR — Next
5. Display “Data Not fond"
7. Exit. '

LO3D> Data Structure & Algorithms

}

Q 20. What are the various application of link list? How is it different from array
"as a data structure? Explain with examples. (PTU, May 2010)

Ans. A linked list is a linear collection of data elements linked to one another by means
of pBinters. Linked lists are used in a wide variety of application. Some of the application of
the linked lists are : 3

1. Linked lists are used to implement other data structures such as stacks, queues,
trees and graphs.

5. Linked lists can be used to maintain a directory of names.

3. Linked lists can be used to perform arithmetic operations on long integers.

4. Polynomials can be manipulated by using linked lists.

5. Sparse matrics can be represented with the help of linked lists.

The principal benefit of a linked list over an array is that the order of the linked items
may be different from the order that the data items are stored in memory. For that reason,
linked lists allow insertion and deletion of nodes at any point in the list, with a constant number
of operations. '

Arrays are of fixed size but linked is not fixed, it can grow as the data item increases,

*But in arrays data access is very fast became data item can be directly accessed by its index
value. '

Linked lists have an extra overhead in its each node to store pointers to its next node.

Q 21. What are the various operation possible on a doubly link list? Explain with
the algorithm and graphically. (PTU, Dec. 2010)

OR

What are the various operations possible on a doubly link list? Explain with

examples. (PTU, May 2011)

Ans. Operations on Two-Way Lists : Suppose LIST is a two-way list in memory. This
subsection discusses a number of operations on LIST.

Traversing : Suppose we want to traverse LIST in order to process each node exactly

nce. Then we can use algorithm if LIST is an ordinary two-way list, or we can use algo'rithm

LIST contains a header node. Here it is of no advantage that the data are organized as @
yo-way list rather than as a one-way list.

.appears near the end of the list. For example, suppose LIST i

Linked List 65

searching : Suppose we are given an ITEM of information a key value — and we want
1o find the location LOC of ITEM in LIST. Then we can use Algorithm if LIST is an ordinary
two-way list, or we can use algorithm if LIST has a header node. Here the main advantage is
that we can search for ITEM in the backward direction if we have reason to suspect that \TEM
s a list of names sorted
alphabeﬁcally. If ITEM = Smith, then we would search LIST in the backward direction, but if
[TEM = Davis, then we would search LIST in the forward direction.

peleting : Suppose we are given the location LOC of a node N in LIST and suppose we
want to delete N from the list. We assume that LIST is a two-way circular header list. Note that
BACK [LOC] and FORW [LOC] are the locations, respectively, of the nodes which precede
and follow node N. According as pictured in fig., N is deleted from the list by changing the

jollowing pair of pointers :

LOC

'::::r.—'\\/\rl"\:‘l\jr\ft:\

=

N—

NG

Deleting Node N

FORW [BACK [LOC]] = FORW [LOC] and BACK [FORW [LOC]] : = BACK [LOC]
The deleted node N is then returned to the AVAIL list by the assignments :
FORW [LOC] = AVAIL and AVAIL =LOC

The formal statement of the algorithm follows :
DEL TWL (INFO, FORW, BACK, START, AVAK, LOC)
1. [Delete node]
Set FORW [BACK [LOC]] : = FORW [LOC] and
BACK [FORW [LOC]] : = BACK [LOC].
2. [Return mode to AVAIL list]

Set FORW [LOC] : = AVAIL and AVAIL : = LOC.
3. Exit.

Here we see one main advantage of a two-way list. If the data were organized as one

_ way list then in order to delete. N, We would have to traverse the one way list to find the
location of the hode preceding N.

Inserting : Suppose we are given the location LOCA and LOCB of adjacent nodes A

and B in LIST and suppose we want to insert a given ITEM of information between nodes A

and B. As with a one way list, first we remove the first node N from the AVAIL list, using the

variable NEW to keep track of its location, and then we copy the data ITEM into the node N
that is, we set :

C



“ 48 LO3D> Data Structure & Algorithmg

NEW : = AVAIL, AVAIL : = FORW [AVAIL], INFO [NEW] : = ITEM _ L
Now, as pictured in fig., the node N with contents ITEM is inserted into the list by Ghar_lging
the following four pointers : g
FORW [LOCA] : = NEW, FORW [NEW] : = LOC B
BACK [LOC B] : = NEW, BACK [NEW] : = LOC A
The formal statement of our algorithm follows :
INSTWL (INFO, FORW, BACK, START, AVAIL, LOCA, LOCB, ITEM) _
1. [OVERFLOW?] if AVAIL = NULL, then : Write : OVERFLOW, and Exit.
2. [Remove node from AVAIL list and copy new data into node]
Set NEW = AVAIL, AVAIL := FORW [AVAIL], INFO [NEW] : = ITEM.

LOC A Loc B

[ e

3. [Insert node into list]
Set FORW [LOC A] : = NEW, FORW [NEW] : = LOC B,
BACK [LOC B] : = NEW, BACK [NEW] : = LOC A.

4. Exit.

Algorithm assumes that LIST contains a header node. Hence LOC A or LOC B may
point to the header node. In which case N will be inserted as the first node or the last node. If
LIST does not contain a header node then we must consider the case that LOCA = NULL and
V is inserted as the first node in the list, and the case that LOCB = NULL and is inserted as
1€ last node in the list.

Remark : Generally speaking, starting data as a two-way list.Which requires extra space
“the backward pointers and extra time to change the added pointers rather than as a one
y list is not worth the expense unless one must freq

. _ frequently find the location of the node
ch proceeds a given node N as in the deletion above '

Q 22. Write an algorithm to concatenate two linked lists.
Ans. P =LISTA. Head — Prev :

Q = LISTB. Head — Prev ;

(PTU, May 2007)

‘various applications of linked list? Explain with examples.

Linked List 67

P — Next = LISTB. Head ;
LISTB. Head — Prev=P :
LISTA. Head —» Prev=Q ;
Q — Next = LISTA. Head ;

Q 23. What is the need for garbage collection? (PTU, May 2011)
Ans. Garbage collection (gc) is a form of automatic memory management.The garbage
collector or just collector, attempts to reclaim garbage or memory occupied by objects that
. are no longer in use by the program.
Benefits : Garbage collection frees the programmer from manually dealing with memory
deallocation. As a result, certain categories of bugs are eliminated or substantially reduced.
O Dangling Pointer Bugs : Which occur when a piece of memory is freed while there
~are still pointers to it and one of those pointers is then used. By then the memory
may have been re-assigned to another use, with unpredictable results.
O Double Free Bugs : Which occur when the program tries to free a region of memory
that has already been freed and perhaps already been allocated again.
" Certain kinds of memory leaks in which a program fails to free memory occupied by.
object that will not be used again leading over time, to memory exhaustion. Some of
these bugs can have security implications.

Q 24. What is circular linked list? (PTU, May 2011)
Ans. A circulary linked list may be a natural option to represent that are naturally circular,

e.g. the corners of a polygon, a pool of buffers that are used and released in FIFQ order or a
set of processes that should be time-shared in round-robin order. In these applications a

.pointer to any node server as a handle to the whole list.

With a circular list a pointer to the last node gives easy access also to the first node, by
following one link. Thus, in applications that require access to both ends of the list (e.gin the
implementation of a queue), a circular structure allows one to handie the structure by a single
poniter, instead of two.

. A circular list can be sﬁﬁt into two circular lists, in constant time, by giving the addresses
of the last node of each piece.

Q 25. Give the advantages of doubly linked list over single linked list.

. . (PTU, Dec. 2012)
Ans. In a doubly linked list, each node contains, besides the next-node link, a second

link field pointing to the previous node in the sequence. The two links may be called forward
and backward or next and previous.

X T Fpe e[ AL T3

In single link list there is no backward pointer.

Q 26. How a linked list is different from array as a data structure. What are the

(PTU, May 2011)
Ans. Linked lists have several advantages over arrays. Elements can be inserted into

linked liks indefinitely while an array will eventually either fill up or need to be resized, an



i _ LOaD> Data Structure g Alg‘"ith

B - . ;

; a:'zf’nfsrg:] OPeration that may not even be possible. If mrﬁ:;r:sltsefgﬁ)?z;r:;d ;)rs:_izgzﬂy, a

s sméu‘]Whi-::h Many elements we removed may become to by
er. ) .

On the Other hang, arrays. allow rahdom access, while linked l;sdtg allow ar_my s?unnual
access to elements, Singly linked lists in fact, can only be traversed in one directig, " 4
makes linkeqg lists unsuitable for applications where it's useful to [00k up an elemegp, by g
Index quickly such as heap sort. Sequential access on arrays is also faster than On linkeg,

©ON many machines que to locality of reference and data caches. Linked lists receiveq Qlmog
No benefit from the cache.

Another disadvantage of linked listed lists is the extra storage needed for refereng
which often makes them impractical for lists of small data items such as characters or boglgy,
values. It can ajso be slow and with a naive allocator, wasteful to allocate memory Separaleiy
for each new element, a problem generally solved using memory pools.

The main applications of linked lists are : : S

For fépresenting polynomials it means. in addition subtraction/multiplication of tyg
Polynomials. Eg. P1 = 2 x A2 + 3X + 7 and
P2=3xA34+5x+2P1 4+ P2=3xA3+2xA2+8x+9.
O In dynamic memory management in allocation and releasing memory at un timg

*In symbol table in balancing parenthesis.

Q Representing sparse matrix.

Q 27. What are the limitations of linked lists?

Ans. The limitations of linked list are :

(a) Linked list insert data using technique for doubly linked list.

(b) Linked list can be insert data first, last.

Q 28. Suppose the names of few students of a class are as below :
Ram, Sham, Mohan, Sohan, Vimal, Komal
It is assumed that the names of the students is represented as a single link list,
ite a algorithm/program to insert the name of a student Raman between Sham ang
han. Represent it graphically also. (PTU, May 2013)
Ans. Insloc (Info, Link, Start, Avail, Loc, Item)
1. If avail = Null, then write overflow and exit.
2. Set NEW = Avail and Avail = Link [Avail]
3. Set Info [NEW] = Item
4. If LOC = Null then
Set Link [NEW] = Start and Start = New
Else
Set Link [New] = Link [LOC] and Link [LOC] = New
5. Exit

(PTU, May 201)

Start
NE

Linked List 69

Q 29. Let there be a doubly link list with three element, P, Q, R. How S can be

added between P and Q. (PTU, Dec. 2013)
Ans.

Head NewNode
ea

NULL NULL

1
L AP ] =TT J=—F Ts7 ]
NULL NULL

Head

I I [T 3—FTel ]

NULL X 3
LlsT"]
Q 30. Implement a Single Linked List method that reverses the order of elements
in Single Linked List. This method should run in O(n) time and shall not use recursion.
(PTU, May 2014)
Ans. Implement an algorithm to reverse a singly linked list without recursion,
Node * RevSList (Node* pCur)
{
Node * pRev = NULL:
while (pCur)
{ ;
Node * pNext = pCur — Next;
PCur — Next = pRev;
pRev = pCur;
pCur = pNext;
}
return pRev;

}

i i it can be implemented?

Q 31. What is garbage collection and how i p AN

Ans. Garbage Collection : Garbage collection (GC), also known as automatic r?gomr:
management, is the automatic recycling of dynamically allocated memory. Garbag: T::, e
is performed by a garbage collector which recycles memory that it can pro:s e:as e
used again. Systems and languages which use garbage colleqtron canbe (tjesc llmm o
collected. Other words, Garbage collection (GC) is a dyn.amm.a_pproacr; :)n ::1 e s e
.management and heap allocation that processes and identifies dea

]



70

reallocates stora
. leaks,

GC implementation requires three primary approaches as follows : .
1. Mark-and-sweep : In process when memory runs out, the GC locates all accessiblg
.Memory and then reclaims available memory. .
2. Reference counting : Allocated objects contain a reference count of the referencin
number. When the memory count is zero, the object is garbage and is then destroyed. The
freed memory returns. to the memory heap. . Ly
3. Copy collection : There are two memory partitions. If the first partition is full, the Ge
locates all accessible data structures and copies them to the second partition, compacting
memory after GC process and allowing continuous free memory.

ge for reuse. The primary purpose of garbage collection is to reduce memory

Q 32. Define Linked list in data structure. How can we use linked list to implement
Queue. Write suitable methods to perform enqueue, dequeue operations on queue
using linked representation. -

When implementing Queue with linked list, shall a pointer be kept to the end of
the linked list also? What about when impelementing Stack using linked list?
(PTU, May 2019, 2014)

Ans. Linked List : A linked list is a set of nodes where each node has two fields “data”
and “link”,

The data field is used to store actual piece of information and link field is used to store
ddress of next node.

An alternative and efficient representation of Queues is possible by using linked list for
oring the data elements using dynamic memory.
Implemention of queues using linked list
U Allocate memory for each new element dynamically.
O Link the queue elements together.
Q Use two pointers, Front and Rear, to mark the front and rear of the queue,

Front Rear

r

7
[H # New node

l—i_l New node

Queue using linked list
nqueue Operation

Start
Read element
element — next = NULL

If (rear = NULL) then make following assignments
i) rear = element
i) item = rear

LO3ID> Data Structure & Algorithmg

Iand rear both are NULL, it indicates that the queue of empty.

r

Linked List 71
' 5. (i) rear — next = element
(iiy rear = element

6. Stop-

Dequeue operation

1. Start |

2. If gtem = NULL) then print that Queue is empty, go to step 7 after making assignment

ar = item, otherwise proceed. . | ‘

© 3. If (front = rear), then, there is.only one element present in the list, remove it, go to step
7 aﬂer: making an assignment front = rear = NULL, otherwise proceed.

4. element = item

5. item = item — next

6. Remove an element

7. Stop.

1. There is no need of knowing the stack size before implementing it, as dynamic memory

allocation technigue helps the programmer to declare the memory space at run time.

2. Data movement i.e. pushing or inserting and popping or deleting from stack is very
easily handled with the concept of pointer in linked list.

3. The stack is never full as long as the system has enough space for Dynamic memory

- allocation.

Q 33. Explain linked representation of queue ?

Ans. The array implementation of queue cannot be used for the large scale applications
one of the alternatives of array implementation is linked list implementation of queue. The
storage requirement of linked representation of a queue with n elements is O (n) while the
time requirement for operations is O (1). In the linked queue each node of the queue consists
of two parts i.e. data part and the link past. Each element of the queue points to its immediate
next element in the memory. In the linked queue, there are two pointer maintained in the
memory i.e. front pointer and rear pointer. The front pointer contains the address of the
element of the queue starting while the rear pointer contains the address of last element of
the queue. Insertions and deletions are performed at rear and front end respectively. If fron:

The linked representation of Queue is shown in the following figure -

9 e El

 E— 4

Front Rear

Linked Queue
Q 34. What is a header node ?
Ans. A header node is a special node at the beginning of the list in the header linked list,
Itis an extra node kept at the front of a list. Such a node does not represent an item in the list,
Q 35. What is B+ tree ? What are its advantages ?

Ans. B+ tree is an extension of B tree which allows efficient insertion, deleucn_ar‘.lf‘
Search operations. The leaf nodes of a B+ tree are linked together in the form of a sing!,

-



72

e

memory is always limited,. the internal nodes of the B+ tree are stored in the main memo

whereas, leaf nodes are stored in the seconda

often called index nodes.
Advantages

1. Records can be fetched in equal number of disk accesses
2. Height of the tree remains balanced and less as compare to B tree.

3. We can access the data stored in a B+ tree sequentially as well as directly.
4. Keys are used for indexing. : .

5. Faster search queries as the data in stored only on the leaf nodes.

Q 36. Define stack. How stacks are implemented using linked list?

Ans. A stack is a list of elements in which an element may be inserted
one end, called top of the stack. It uses LIFO operation, i.e. last in first o
erformed on stack are :
(i) Push, i.e. to insert an element to stack.

(ii) Pop, to delete an element from a stack.
Stacks can also be im

stead of ‘TOP’, rest all is same. In this case, insertion can only be possible at the b
 elements can be added only to top of the stack.

Insertion at the beginning
PUSH (TOP, AVAIL, INFO, ITEM, LINK)
1. IfAVAIL = NULL, then :
Write overflow and Exit
2. SetNEW = AVAIL Stant
Set AVAIL = LINK [AVAIL] l }\
3. Set INFO [NEW] = ITEM
4. SetLINK [NEW] = TOP

TOP = NEW
5. Exit

| = Tx]

NEW

[~

2

Q 37. How stacks are re

: Presented using linked list a stack elements can also be
| using?
ns. Linked list : Such a representation is known as link
ed stack. The b
ed stack is due to the fact t meehopily

LO3ID> Data Structure & Algorithmg

linked lists to make the search queries more efficient. B+ tree are used to store the large
amount of data which cannot be stored in the main memory. Due to the fact that size of main

ry memory. The internal nodes of B+ tree arg

(PTU, Dec. 2006)
or deleted only gt
ut, two operationg

Plemented using link list. In this case, we use a variable ‘START

eginning

S N Wbk N®

73

ﬁ-«—- MAXSTK

&2 __[+—TOR INFO NEXTPTR

2o X

Array representation ° Linked stack

TOP is the position of last element of stack.
MAXSTK is the maximum capacity of the stack.
Q 38. What is traversing ? Write an algorithm for traversing a link list ?

(PTU, Dec. 2014)
Ans. Traversing : Traversing a tree means processing it in such a way, that each node

is visited only once.

Algorithm for traversing a linked list :

Step 1. Set Pointer = HEAD

Step 2. Repeat Steps 3 & 4 while Pointer = NULL
Step 3. Apply Process to Data[Pointer]

Setp 4. Pointer = Link[Pointer]

Step 5. Stop

Q 39. Write the algorithms for the following:
(a) Deleting an element from a doubly link list.
(b) Inserting an element in a priority queue.
(c) To reverse a string of characters using stack.
(d) To search an element in a sorted array.

(PTU, Dec. 2014)
Ans. (a) Deleting an element from a doubly link list :

1. Start
2. While list is not over
Loop

Check whether current node is not matching. If

SO Q0 to the next node otherwise ge
to next step.

3. You reach this step only when matching node is found. Check whether matching
node is first node. If so change starting address. Also change previous address o!
next node to null. Otherwise goto next step

4. Check whether matching node is not the last node It SO set the next hink of its
previous node to next of matching node. Set the previous link of next node 19
previous of matching node. Otherwise goto next step

5. You reach this step only when matching node is last node. So set the next link ¢!
previous node to null.

6. F.

? the memory of matching node and STOP. (End of loop)



r

LO3D> Data Structure & Algorithms inked List -
LI
7. Display error message that node is not found. poly 2 can be represented as :
8. Stop. ¢
(b) Inserting an element in a priority Queue :
1. Start ofoo] |—feeo] —+{22o] }—f-1lol-\
2. Read the value to be inserted and assign it to i. —
3. Now insert the value at location point to by i, using an assignment PQ[i++] = value The node of the polynomial is of the form
4. Stop. l Coefficient of the term l Power of x \L'mk 1o next node
(c) To reverse a string of characters using stack : : procedure for Adding two Polynomials
Step 1. Create an empty stack. - typedef struct node_type
Step 2. One by one push all characters of string to stack. {
Step 3. One by one pop all characters from stack and put them back to string. int coeff:
(d) To search an element in a sorted array : into power;
1. [Initialize] struct node_type "next;
Low =20 e } node;
HIGH = n — 1 [LOW and HIGH denotes the lower and upper limit] node *poly;
2. [Perform search] void AddPolynomial(node *ptr1, node *ptr2, node *=ptr3)
Repeat thru step 4 while LOW <= HIGH (
. [Obtain index of midpoint of interval] int poWC;
MIDDLE = INT ((Low + HIGH)/2) int coef"
(o] ile((ptril= NULL) && (ptr2!= NULL
If ELEMENT < LIST[MIDDLE] [ELEMENT = given element, LIST = array] ‘;h' A ) ® )
tt;en HIGH = MIDDLE-1 if(ptr1 — power >'ptré —> power)
else’
If ELEMENT > LISTIMIDDLE] : ! : Eoef I—
tf& IDDLE ) powe = ptr1 — power;
LO = MIDDLE + 1 ptr1 = ptr1 — next;
else }
Write(‘SUCCESSFUL SEARCH’) :
; d else if(ptr1 —power < ptr2 —power
POS = MIDDLE[POS = Position of given element] | { \pirt —p ptr2 —power)
Write[ UNSUCCESSFUL SEARCH’] Coef = ptr2 —>Coeff;
gfts i powe = ptr2 —power;
it.

). Show the linked representation of the following two polynomials.
7x80 4+ 5x50 + 3x30 + 1=0
9x904+ 6x60 + 2x20 - 1=0

i a procedure for adding two polynomials stored in linked lists. Verify steps
ocedure for the above two polynomials. (PTU, May 2015)
7x80 4+ 5x50 4+ 3x30 + 1=0 k1)
O9x%0 + 6x60 +2x20—-1=0 e @)
i can be represented as :

7 s0] —»{5 |50 3[30] —{1]o]"]

ptr2 = ptr 2 —next;
}

else

{
Coef = ptr1 —>coeff + ptr2 —Coeff |

powe = ptr1 —power;

ptr1 = ptr1 —next;

ptr2 = ptr2 —next;

}

if(coef | = 0)

add node(ptr3, coef, powe),



76
S

} ;
if(ptr1 = = NULL)
{

for (; ptr2 | = (node*) NULL; ptr2 = ptr2 —next)
}add—mde(ptr-?. ptr2 —>Coef, ptr2 —>powe);

else if(ptr2 = = NULL)
{

for (; ptr1 | = NULL; ptr1 = ptri= ptr1 —next)
}add—”ode (ptr3, ptr1 —Coef, ptr1 —>powe);

Coef=29
powe = 90
add(ptrs, g, 90)

Coef=7
powe = 80
add(ptr3, 7, 80)

Like this we keep continuing and finally we get

—

2.

Lo3D> Data Structure g Alg"rith 77

If (New is NULL) then .
Print “Memory is insufficient”
Exit _
3. Otherwise do the following _ . .
(5) Move the address of the HEADER node in a pointer variable ptr
i.e., ptr = HEADER .
(b) Get the data item of the Node key after which the new node has to be placed.
(c) Now traverse the single linked list from the HEADER node to find the node which
s key as-the data item ‘
contai;'le‘ w{ﬂ\e(ptr.DATA is not equal to key) and (ptr.LINK is not equal to NULL)
(a) Go to the next node _
i.e., ptr = ptr.LINK
4. If(ptr.LINK is NULL)
print “Key is not available in the list”
Exit.
Else . .
(a) Make the LINK figld of the new node to point the node pointed out by ptr.
i.e., NEW.LINK = ptr.LINK
(b) Place the data X in the DATA field of the NEW node.
i.e., NEW.DATA=X 5
(c) Now Make the LINK field of the ptr node to point the NEW node.

5. Stop.
Q 43. What are the different ways to implement list ? What are the advantages in
the array implementation of list ? (PTU, Dec. 2015)

Ans. Different ways to implement list : There are two difierent ways to implement
list. -
These are :

variable NEW.
ie., NEW:GETNODE(NODE)

. : Ans. datastructure rints the given
1y block of type NODE ang store the addres(PTU, May 2015) ()p

1. Simple array implementation of list
2. Linked list implementation of list.

Advantages in the array implementation of list :

1. Print list operation can be carried out at the linear time.
2. Find K" operation takes a constant time.

Q 44. What does the following function do for a given Linked List ?
void datastructure(struct node*head)

{

If (head = = NULL)

return ;

datastructure(head—next);

3 no " =
;Jnnti( %d", head—data); (PTU, May 20'

. . re( ) pri
s of it in a pointer Linked List in reverse manner. For Linked List 1-52-3-4-5, datastructure{ ) P

945352 1.



Lo3D> Data Structure & Ng""imms
S

Q 45. Write an algorithm to delete 2 specific element in 3 single linked list. Doubjy

p g I Ilst ' lOIilIg address I-l
||I|ked Ilst takes more s ace *I'a" sin Iy I nked or s one extra
w'lat col lditlo“ cou‘d be a dOubly ll."ked Iist be more be"efICIal tl 1an sll Igly hllked ull

(PTU, May 201 §)
Ans. Suppose START is the first

position in linked list. Let DATA be thle
element to be deleted. TEMP, HOLD is
a temporary pointer 10 hold the node
address .
1. Input the DATA to be deleted
2. If (START—DATA) is equal to DATA)
(a) TEMP = START
(b) START:= START—Next
(c) Set free-the node TEMP, which is deleted.
(d) Exit.
3. HOLD = START
4. While (HOLD—>Next—>Next) not equal to NULL))
(a) If ((HOLD->NEXT—DATA) equal to DATA)
(i) TEMP = HOLD—>Next
(i) HOLD—Next = TEMP—Next
(iii) Set free the node TEMP, which is deleted
(iv) Exit” '] -
(b) HOLD = HOLD—>Next
If (HOLD—>next->DATA) = = DATA)
(a) TEMP = HOLD—Next
(b) Set free the node TEMP, which is deleted (C)
(c) HOLD—>Next = NULL

Node to be deleted
je. POS=3

Deletion of a node

5.

(d) Exit :
6. Display “Data not found”
7. Exit.

In doubly linked list, we can traverse list both i.e., forward and backward. The major
advantage of doubly linked lists is that they make some operations (like the removal of a
given node, or a right-to-left-traversal of the list) more efficient. B -

Q 46. What is a doubly-linked list ? Write an algorithm to create a doubly-linked
list and also write a function to insert a node in doubly-linked list.
Ans. Doubly-linked list : Referto Q.No. 4 & 13
The algorithm for creation of doubly linked list is given below :
1. Take a new node in pointer-called first.
2. For—left Link = NULL. '
3. Read Data (First)
4. back = First

5. Bring a new node in the pointer called for.
6. Read Data (Far)

7. back—right Link = Far

(PTU, May 2016)

Linked =

to in

5 Far—left Link = Back
" pack = Far

P Repeat step 5 to 9 till whole of the list is constructed.
10

10 For_sright List = NULL
Stop.

a ;17 What are dbubiy linked lists and what-are their advantage

e a node in a doubly linked list.
sertsa%dogg::tlinked lists : Refer to Q.No. 4
i'c‘lv.antages . Refer to Q.No. 25

ram : _
Zirr?cg\ude<stdio.h>
#include<stdﬁb.h>
#include<conio.h>
struct node

int data; (
struct node *next, *prev;

yN&w, *newl, *temp, *start, *dummy;
void add(void);

struct node * get_node( );

void display(void);

void delet(void);

int find(int);

int first = 1;

void main( )

{

char ans;

int choice, num, found = 0O;
start = NULL;

do

clrser( );

Printf(“\n\t Program for Doubly Linked List \n");
Printf("\n\n 1. Insertion of Element \n\n");
Printf(“2. Delection of element from the List\n\n");
Printf(“3. Display of Doubly Linked List \n\n");
Printf(“4. Searching of Particular node \n\n");
Printf(“5. Exit™);

Printf(“\n Enter your choice™);

scanf(“%d", &choice);

switch(choice)

{

case 1 :add();
break; ;
case 2 : delete( ),
break;

case 3 : display( );

s ? Wrile a progre
(PTU, Dec. 20°



-

LO3D> Data Structure & Algor;

80
o be searched”):

break;

case 4 : printf("\

scanf(“%d”, &num);

temp = start ;

while((temp = NULL) && (found == 0))
. found = find(num);

if(found)

printf(“\n The number is present”);
else :

printf(“\n The number is not present”);
break;

case 5 : exist(0);

“n Do you want t0 continue 7\n");

n Enter the number which is t

1
* printf (
ans = getche( );

Jwhile(ans == '
getch( ); '

'l ans =="Y);

}
void add (void)

clrser( );
New = get_node( );

printf(“\n\n\n\t Enter the element\n”);
scanf(“%d”, &New—data);

if(first==1)

{

start = New;
first = O;

}

else

{

dummy = start;
while(dummy—>next | = NULL)
dummy = dummy—next;

dummy—next = New;
New—prev = dummy;

}

} 7

struct node *get_node ()

{

new 1 = (node *) malloc (size of(struct node));

new 1—next = NULL;
new 1— prev = NULL'

eturn(new1);

oid display( void)



) il

ink

AUt
o i
alrscr( );

temp = Stars
if (tempP == NULL)

orintf(“\1 The Double Linked List is Empty\n”);
else -

{
while (temp = NULL)

printf (“%d = ", temp—data);
temp = temp—next;

}
printf(“NULL");

. )
getch( );

int find (int num)

if (temp—data == num)
return(1);

else 5

temp =-temp > next;
return O;

}
void delet (void)

int num, flag = 0;

int found; -

int last = O;

clrser( );

temp = start;.

if (temp== NULL) .

printf(“\n\n Sorry : DLL not created!\n”);
else

{ 3 ‘ " |
printf(“Enter the number to be deleted”);

scanf (“%d”, &hum); % 5
while((flag = = 0) & & (temp 1= NULL)

found = find(num);
flag = found;

}
if (found == 0) N
printf (“\n Number not found”);

else

{
if(temp == start)

start = start—ernext_;' .

81



header node at the beginning of the Jist

lemp—next = NULL;

startsprev = MNULL: ' >
free(temp); '

getch( );

}Di‘i'ntf(”\n The starting node is deleted”);

else
{
if (temp—next == NULL)
last = 1;
else
last = O;

(temp-—mext) — prev = temp — prev;
(temp—-»prevj — nex = temp — next; -
temp—;prev = NULL;
temp—snext = NULL;
_free(temp); ,
if(last)
g;;r;tf( \n The last mode is deleted”)

J{orfntf("‘nn The intermediate node is deleted”)

}
}
} .
Q 48. wri i
Write an algorithm to insert new node at the end of a Doubie Linkeq |
st,

Ans. Insert (value) ' o 201?;
1. Start
2. Set PTR = addressof
New nod
43. ’?i—t PTR—INFO = vahfe' .
- I FIRST = NULL, then go to st
i go to step 5 else
g. SSet FIRST = PTR and LAST = P"?’H a
+ 26t PTRSNEXT = PTRSPREVIOUS = NULL and goto step 8

7. Set LAST-NEXT =
N e PTR, PTR-PREVIOUS = LAST, PTR_NEXT < NULL

8. STOP.
fn:Q:qE:]eﬁge header nodes,
_Ahe : S ;
ader linked list is a linked list which always contains a speciglazgc’iema)l’l ‘4.;01“8)
called the

Q 50. How pointers are used

e ———— s X

Chapter - |

3B

Trees

B.asic Tree Terminology, Different types of Trees Binary Tree, Threaded Binary Tree,
Binary Search 'Free. AVLlTree ; T.ree operations on each of the trees and their algorithms
with complexity analysis, Applications of Binary Trees. B Tree, B+ Tree : Definitions
algorithms and analysis.

POINTS TO REMEMBER @j

iF Atree T is a finite set of nodes such that there is a special node called the root from
which the remaining nodes can be partitioned into zero, one or more disjoint subsets T1,
T2, wovenns Tn (N > Q) each of which itself is a tree known as subtree of T.

& A node of tree stores the data element and may contain zero, one or more link (s) to

other successor node (s) for connectivity. A node can be a parent, child or both.
1 A directed line from one node to other successor node is called an edge of a tree.
1= Two or more node with same parent are called siblings.
¥ The node that has no parent is called the root and the node that has no child is called the
leaf node.
i A path is a resulting sequence of nodes when we traverse from one node to other node
along the edges that connect them. -
IF° The level of a node is an integer value that measures the distance of a node from the roo!
I The maximum number of children that are possible for a node is known as the degree
variety of node.
IF The height of a node is an integer value that measures the distance of a node from !

root.
IF The depth of a node is a the length of unique path from the node to the root of the tr

BF A binary tree is a tree in which no node can have more than two children.

IF A binary is a full binary tree if each node has exactly zero or two children.

I A complete binary tree is a tree which is either full binary tree or one in which every |
is fully occupied except possibly for bottomost level where all the nodes must be 2

left as possible.
83



™~

'r

84 LO3D) Data Structure & AlgOrithms

(< ; 3
A binary tree traversal visits each node of the tree exactly once in a predeterming,

versal approaches qf e

sequence.
™ Breadth-first traversal and depth-first traversal are the two tra
binary tree.
IS Using depth first approach, we may traverse a binary tree in six dafferer:t ZGQUQ”CES.
however, only three of these sequences namely preorder, inor der and postorder are the

standard ones.
I |n the preorder traversal of binary tree, we first process the root, followed by the left
subtree and then the right subtree.
In the inorder traversal of binary tree, we begin b
followed by the root node and then the right subtree o

y first processing the left subtree,
f the root provided subtrees arg

not empty.
"8F |n the post-order traversal
right subtree and then the root.

©F An expression tree is a binary tree which is use
e whose node are arranged in such a way that for

of binary tree, we process the left subtrees, followed by the

d to represent an arithmetic expression,

&F A binary search tree is a binary tre
every node N, the values contained in all the nodes in its left subtree are less than valye

contained in node N and the values contained in all the nodes in its right subtree arg
greater than or equal to the value contained in node N. :

V &F The inorder traversal ot & BST produces an ordered list.

I=F Toinsert a node in a BST, we follow the left or right branch down the tree, depending on

the value of new node, until we find a null subtree.
IF A heap tree (max tree) is a complete binary tree in which data values stored in any node

is greater than or equal to the value of its children.
EF |nsertion and deletion are the key operations performed on a heap tree.
BF As heap tree is a complete binary tree so space is used efficiently when it is implemented

as an array.
EF Priority queues and heap sort are the key applications of heap tree.

I The balance factorof a node of binary tree is the difference in the height of its left and

right subtrees.
B A binary tree is balanced if the height of its subtrees differ by no more than 1 and its

Subtrees are also balance.
IF" An AVL tree is a BST in which each node has a balance factor of +1, 0, or —1.

i "
In LL rotation, unbalanced AVL tree can be balanced by rotating the out of balance node
to the right. '

85

Trees

QUESTION-ANSWERS |

Q 1. What are threads? (PTU, Dec. 2004)

Ans. Consider the linked representation of a binary tree T as below :

Head[ |

-. Head node

Approximately half of the entries in the pointer fields LEFT and RIGHT will contain null

elements. This space may be more efficiently used by replacing null entries by some other
type of information. Specifically, we will replace certain null entries by special pointers which

point to nodes higher in tree. These special pointers are called threads.
Q 2. What is depth of a complete binary tree? (PTU, May 2005 ; Dec. 2004)
Ans. The depth or height of a tree ‘T’ is the max. no. of nodes in a branch of a tree T'.
This is one more than maximum level no. of tree. The depth d,, of a complete binary tree with

‘n’ nodes is given by -
dy=logan+1
Q 3. Draw a tree corresponding to expression (2x + y) (3x + 5)2.
(PTU, Dec. 2005

Ans. The prefix expression of above tree is :
*+*2xyT+*3x52

v \1
/< N,
2" X */ \5

A



LO32d Data Structure & Algarity,

B Ms  rees ot
u, //—\
(PTU, May 200 Q 7. Discuss the sequentia| Memory representation of binary trees.

Q 4. What is a spaning tree?

OR
. . . PTU, Dec. 2007)
: ) o (PTU, May 200y Ans. Linked Repersentation of Bina . i ’ (
What do you mean by SPanm.g. e h ‘G’, such that ‘T" is connected ang »] rwise stated or implied, T will be maint o it s Ganadit s Olhary trea T Unless
Ans. A spaning tree is a tree 'T’, of a graph .G, it othe < thies sardishom Ntained in memory by means of a linked representation
ins all the vertices as in ‘G’ and it should contain no cycles. which "fse ays, INFO, LEFT and RIGHT pointer variable ROOT as follows -
contains a First of all each node N of T corresponds to location K such that
e.g. . 1. INFO [K] cpnlains the data at the node N,
' 2. LEFT [K] contains the location of left child of node N. '
3. RIGHT [K] contains the location of right child of node N.
- Further mo.re, HQDT wil'l contain the location of root R of T. It may sub-tree is empty,
L N - then corresponding pointer will contain null value ; it the tree T is empty, then ROOT will
'‘G' Spaning Tree 'T' contains NULL value. ;
Q 5. How trees are represented in memory using arrays? (PTU, May 2007, - 59, Tiwea a;e 1% 13, 14 nodes were there in 4 different trees. Which of them
Ans. In case of array representation of binary trees, the root ‘R’ of tree ‘T" is storeq j, °°”[dAhaveTff-’; '“:*5 ?Bfl-l:ldfblnary tree. (PTU, Dec. 2008)
TREE [1]. If a node ‘n’ occupies TREE [K], then, it's left child is stored in TREE [2*K] an g b S
: : * LK/2J
right child is stored in TREE [2* K+1]. /
g X
2*K 2*KH
A
/ \ : 15
8 C / \
/ \ / \ 13 14
D E E G 8
H/ Q9. What are siblings? (PTU, Dec. 2009)
_ - Ans. Siblings are the nodes of the tree having the same father or parent node. For
The above tree has sequential representation as : example, suppose N is a node in a tree T with left successor S, and right successor S,. Then
‘N is called the parent of S, and S,. S, is called the left child or son of N, and S, is called the
[A [B [c]pb [ E [ Fla ’ [ ] ] I [ [ H [ [ right child or son of N. S; and S, are said to be siblings or brothers.
12 3 456 7 8 9 1011 1213 14 15 Q 10. What is the best and average case of binary search? (PTU, Dec. 2010
o , Ans. The binar rc i i fficien rithm, it h me maijo
Q 6. What Is binary search tree? Give examiple. | (FTU, May 2067} drawbacks TSpe:ilf?ja: S[tat?e 2| a;?i?g:?Zs;Su;evsegaT cl?*: t‘tna?gc'i?r;tctmaclcesasst; c:hee mi:im
Ans. A tree ‘T" is called a Binary Search tree if each node ‘N’ of ‘T’ has the following ' s g

name in the list or a sublist. This means that the list must be stored in some type of array
Unfortunately, inserting an element in an array requires elements to be moved down the lis
and deleting an element from an array requires element to be moved up the list.
The telephone company solves the above problem by printing a new directory eve
year while keeping a separate temporary file for new telephone customers. That is, tr
25 telephone company updates its files every year. On the other hand, a bank may want
/ \ isa B.S.T. (Binary Search Tree) insert a new customers in its files almost instantaneously. According, a linearly sorted |
15 30

may not be the best data structure for a bank.

. properties :

The value at ‘N' is greater than every value in the left sub-tree and is less than every
value right sub tree of ‘N’.

e.g.



LO3DD Data Structure & A|9°rith
88 .

Q 11. What is tree?

INORD (INFO, LEFT, Rig

89
——
OR 1. SetTOP rimong
¥ Ee = 1.STACK [1] = NULL &
Dec. 20 : PTR = ROOT
What is a binary tree? aIIEaZTr:t';:de: such1 ?h <y 2. Repeat while PTR » Ny
Ans. A binary tree T is defined as a finite set of ;emmems' ’ ‘ 25 () Set TOP =TOP 4+ 1 g STACK [TOP] = PTR
- 4 ty tree), or - (b) Set PTR = L B
- (a) T is empty (called the null tree or emp . EFT (PTR]
((b)J T contains a distinguished node R, called t:;E,Tmm Tt Sy 3, St PTR = STACK [TOP] & TOP = TOP - 1
i isjoint binary trees Ty and T. 4. Repeat st i
T form an ordered pair of disjoint binary i - Repeat steps 5 yo 7 while PTR » nuL
' If T does contain a root R, then the two trees Triang T . E‘TIg ;atlfedller:sspj;::i ol 5. Apply Process to INFO {PTR] ’ -
and right subtrees of R. If T is non empty, then its root is ca :sor B FotR, 6. IfRIGHT [PTR]  NULL, them -
similarly, if T is nonempty, then its root is called the right succe s e (a) Set PTR = RIGHT [PTR
Q 12. What is traversal method of a threaded binary tree?  (PTU, Dee. 29y (b) Go to:step'2
Ans. There are many ways (o thréad a binary tree T, but each threading will correspong 7. Set PTR = STACK [TOP], TOP = TOP - 1
to a particular traversal of T. Also, one may choose a one-way threading or a two-y, 8. Exit. . s
threading. Unless otherwise stated, our threading will correspond to the inorder tranSVersa|

of T. Accordingly, in the one-way threading of T, a thread will appear in the rig‘ht field of 5 node
and will point to the next node in the inorder transversal of T ; and in the two-way threading of

POSTORD (INFO, LEFT, RIGHT, ROOT)
i 7

Set TOP = 1, STACK [1] = NULL, PTR = ROOT

T, a thread will also appear in the LEFT field of a node and will point to the preceeding nog, g SEF_T_?; Psf?rso i?f:g‘_‘;gl?_r’;;u:;TH
in the inorder transversal of T. & RO TR
Q 13. What is a AVL tree? (PTU, May 2019 ; Dec. 2010} el t : , them ﬁ
Ans. An empty binary tree is a an AVL tree. A non empty binary tree T is an AVL tree iff 5 391 g = :p +1 & STACK [TOP] = —-RIGHT [PTR]
given Tt and TR o be the left and right subtrees of T and h (TL) and h (TR) to be the heights . o€ = LEFT [PTR]
of subtrees Tt and TR respectively. TL and TR are AVL trees and \h (TL) — h (TR) < 1. 6. SetPTR= .STACK [TOP] & TOP = TOP - 1
. h (TY) = h (TR) is known as the balance factor (BF) and for an AVL tree the balance 7. Repeat while PTR >0 :
factor of a node can be either 0, 1 or —1. (@) Apply Process to INFO [PTR]
An AVL search tree is a binary seach tree which is an AVL tree. (b) Set PTR = STACK [TOP], TOP = TOP — 1
Q 14. Write an algorithm for pre order, inorder and posorder traversal in a tree, 8. If PTR <0, then
(PTU, May 2004) (a) Set PTR : = —PTR
Ans. (b) Go to step 2
1. PREORD (INFO, LEFT, RIGHT, ROOT) 9. Exit. '

1. Set TOP = 1, STACK [1] = NULL & PTR = ROOT

2. Repeat steps 3 to 5 while PTR = NULL
3. Apply PROCESS TO INFO [PTR]
4. If RIGHT [PTR] # NULL, them :
Set TOP = TOP + 1, STACK [TOP] = RIGHT [PTR]
5. IfLEFT [PTR] # NULL, them :
Set PTR : LEFT [PTR]
ELSE

- R
Set PTR = STACK [TOP], TOP = TOP - 1 / \
) 6. Exit . T, T,

Q 15. What is tree? Explain the type branches of a tree. (PTU, Dec. 20«
Ans. A binary tree (T) is defined as a finite set of elements called nodes, st

1. T is empty.

2. ‘T contains a distinguished node ‘R’ called root of tree “T° and the remaining no
of “T" forms an ordered pair of disjoint binary trees T, and T,. Ty and T, are ca
left and right sub trees of ‘R'. Any node ‘N’ in a binary tree has either 0, 1
sucessors.



LO3RDY Daté Structure & ﬁ\lgorithms
L - Trees 00000 5
Fypien;of tread : T \ e if all its levels ex sorted and allows searches, sequential access inserior o i —
1. Complete binary tree : The tree ‘T’ Is said to be complet d tl ot _tree is a generalization of binary search tree i thsemon and deletion in algorithm time. The
ibly the last have the maximum no. of possible nodes and all the nodes at last leyg B N that a node can have more than two children.
g::::aris far as possible, i.e. in complete binary tree, each node of a tree can have almggy
two nodes and level 'r’ of ‘T' can have atmost 2r nodes.
e.g.
N\ o OEEr
B G . The database problem and B-tiee solves the problem comgletely.
\ 1. Time to search a sorted file.
/ \ / 2. An index speeds the search.
& E E F 3. Insertion and deletion cause trouble.
The depth D, of complete tree T, with ‘n’ nodes is given by

4. The B-tree uses all those ideas.

(b) AVL Search Trees : In computer science, an AVL tree = a self-balancing binary
i search tree, and it was the first such data structure to be invented 1 In an AVL tree, the
2. Extended binary tree : A binary tree ‘T" is said to be a true tree or extended binary : heights of the two child subtrees of any node differ by at miast one. Lookup. inserion, and
tree if each node ‘n' has either 0 or 2 children. The nodes with 2 childrens are called interng|

D, =[logo n + 1]

deletion all take O (log n) time in both the average and worst cases, wnera n is the number of
and nades with 0 childrens are called external nodes. > nodes in the tree prior to the operation. Insertions and deistions may require the tree 1o be
rebalanced by one or more tree rotations.
(c) M-way search Trees : M-way Search Tree : A binary search tree has one value in
: each node.and two subtrees. This notion easily generalizes 1o an M-way search tree, which
‘has (M — 1) values per node and M subtrees. M is cailed the degree of the tree. A binan
— search tree, therefore, has degree 2. In fact, it is not necessary for every node to contal
2 exactly (M — 1) values and have exactly M subtrees. In an M-way subtres a node can hav
anywhere from 1 to (M — 1) values, and the number of (non-empty) subtrees can range fro
"0 (for a leaf) to 1 + (the number of values). M is thus a fixed upper limit on how much data c:
3. General tree : A general tree is defined to be non empty finite set of elements called be stored in a node.
nodes s.t., The values in a node are stored in ascending order, V1 < V2 < .. Vk (k<=M - 1) a
1. T contains a distinguished element ‘R’ called root of tree. the subtrees are placed between adjacent values, with one dimensional subtree at each e
2. The remaining element of ‘T' form an ordered collection of zero or more disjoint We can thus associate with each value a ‘left’ and 'right’ subtree, with the right subtree o
trees Ty, Ty, ....., Th,.

being the same as the left subtree of V (i + 1). All the values in V1's left subtree are less U
V1 ; all the values in Vk's subtree are greater than VK ; and all the values in the sub

/A\ between V (i) and V (i + 1) are greater than V (i) and less than V i = 1).
I

For example, here is a 3-way search tree :

e.g.

Q 16. Write short notes on :
(a) B-Trees

(b) AVL Search Trees
(c) M-way search Trees

| | e | 68
(PTU, Dec. 2011) |so| | |ses |
Ans. (a) B-trees : In computer science, a B-tree is a tree data structure that keeps data (el [1eT+)




. ase alUe of pa
L ¥ trees using «a <iiidil va ‘
In our exampies, it will be convenient to illustrate ME';."?K node cOrresp Ondz 2 o Physicy
But bear in mind tﬁpat in practice, M is usually very 1arge- of data items that can be storeq j, a
“block on disk, and M represents the maximum numbefcessing : to move from one nogg -
single block. M is maximized in order to speedup proslow operation compared to Moving,
another involves reading a block from disk —a very ©
around a data structure stored in memory. yence JRDGTE
Q 17. Design a B.S.T. from following seq

perform operation in sequence. . e
(i) Node J is deleted (ii) Node S is inserted.

Ans. The in order traversal and ‘T’ is :
ADEFGHJIMPQR,T

Now, final tree is : J
t D / \R
/ \ M/ \T
A G \
E/ \H %
\

F . i i
ﬁ) Node J'is deleted : Here, ‘J’ is root node and has 2 Chlldren. It is deleted by

MHPAFq'and

(PTU, May 2007

Q

replacing it with its inorder success i.e. M and M is replaced by P.

1] F
Here, S>J,S>R,S>T.

93

18. For the f i .
= e following tree Write the preoder inorder and postorder traversals.
(PTU, Dec. 2007)

C/A\F
NN\
%% X A

| \ o} N

K

Ans. The preorder tréwersal of tree T is
ACDIGKELFGMHON

The inorder traverse of tree Tis
IDGKCELAGMFOHN

The post order traversal of tree Tis
IKGDLECMGONHEA

Q 19. Discuss different ways of r
application for each of the representations.
presenting a binary tree in the memory

Ans. There are two ways of re
1.-Sequential representation using arrays

2. Linked represetation
1. Array Representation : An array can be used to store of nodes of a binary tree. The
n be accessed sequentially.

nodes stored in an array of memory ca
Suppose T is a binary tree that is complete or nearly complete.
ial representation of T is a linear array Tree as follows:

Then an efficient way of sequent
1. The root of R of T is stored in TREE [11.
then its left child is stored in TREE [2*K] and its right

2. If a node N occupies TREE K],
child is stored in TREE [2* K + 1]

(75)
) (o) (&)
@ @ © © ® ®
Fig. 1 Binary search tree

]715]625\:5\:0\?50[?5[;0\

epresenting a binary tree and suggest an
(PTU, Dec. 2009)

(a) Array representation of binary search tree of fig. 1 (a)



6 7

1 2 3 4 5

s [es] [ [vele

i f fig. 1 (b)
(b) Array representation of binary search tree of 118 | |
n of a tree with depth d will require an

; atio : 1 i
Generally speaking, the sequential rapisaan tial representation 1s usually in efficieng

i en
array with approximately 24+1 elements. So, this sequ

i i te or nearly complete. . .
Ny bmadryﬁtree y ‘Sn:;;tri?:prie- The most popular and practical way of representing g
2. Linked Represe -

i i resented as nodes. Each
binary tree is using linked list. In linked list, every element is rep

node consists of three fields such as :
. 1]
(a) Left child [LEF
(b) Information of the node [INFO]
(c) Right child [RIGHT]
The LEFT links to the left ¢ ‘ ;
node and RIGHT holdes the address of right child o

hild of the parent node, INFO holds the information of every
f the parent node.

INFO

LEFT RIGHT

(b) Binary Tree

(a) Node
Fig. 2 Node and linked representation of binary tree

If a node has not left or/and right node, corresponding LEFT or RIGHT is assigned to
ULL. :
i i in preorder and postorder fashion.
Q 20. Write program to traverse a binary tree in p P PTLL, Moy py
Ans. If a node has left or/and right node, corresponding L child or R child is NULL. The
de structure can be logically represented in C/C++ as :
struct node
{
int Info ;
struct node *Lchild ;
stuct node *Rchild ;
}
typedef struct node*NODE ;

o ) =
95
non-empty binary tree in pre order, following

Pre-order Traversal :
steps one to be processed :
1. Visit the root node
2. Traverse the left sub tree in preorder
3. Traverse the right sub tree in preorder.
It can be implemented in C/C++
void preorder (NODE * Root)
{

To tranverse a

function as below :

if (Root I= NULL)
printf (“%d\n", Root —s info) ;
preorder (Root —s Child) ;
preorder (Root — Child) ;
}
}
Post-order Traversal :
defined as:
1. Traverse the left sub tree in poét order.
2. Traverse the right sub tree in post order.
3. Visit the root node.

In post order traversal, the left and right sub tree
visiting the root.

void postorder (NODE * Root)

The post order traversal of a nonjgmpty binary tree can be

(s) are recursively processed before

{
if (Root | = NULL)
{
postorder (Root — Lchild) ;
postorder (Root —» Rchild) ;
printf (“%d\n”, Root — info) ;
}
}

Q 21. Suppose a binary tree T is in the memory. Write a recursive algorithm or a
Program which find the number of nodes in T and which find the depth of T.

(PTU, Dec. 201

in its left subtre
ght subtree, plus one, so you can use a recursive algoritl

Ans. The number of nodes in any subtree is the number of nodes
plus the number of nodes in its ri

and start at the root.

Unsigned int binary tree_count_recursive (const node * root)
{
unsigned int count = 0 ;
if (root! = NULL) {



LO3ID> Data Structure & Algﬂﬂthrns

~ 2

count = 1 + binary tree_count_recursive (root —> left) Trees. -

+ binary tree_count_recursive (root —> right) ; S a— 97
} 2 | .

return count ; . ) / /,
/ / / =
(o] — F: - ;/
\ = 5 O of ~

}
Q 22. Construct the binary tree for the following expression
(PTU, Dec. 201

(2x — 3z + 5) (3x — y + 8) :
Ans. Construct the binary tree for the following expression : / .
Q 24. Suppose the following list of letters are 1o be inserted into an empty binary

(2x -3z +5) (3x—y + 8)
searchtree :JRDGTEMH P A F Q. Find the final tree. (PTU, Dec. 2004)

.\O

Ans.
A/ \G M/ \T
rd
N
y H P
Q 23. When is a tree said to be a complete binary tree? How is it different from \ \
(PTU, Dec. 2004) F Q
Q 25. What are binary trees? Explain sequential representation of binary trees.
(PTU, May 2005)

extended binary tree?
Ans. The tree ‘T is said to be complete if all of its levels except possibly the last have

the maximum no. of possible nodes and if all the nodes at the last level appear as far ag
_ ' Ans. A binary tree ‘T" is defined as a finite set of elements cales nodes st

possible.
v 1. T'is empty (it is called null or empty tree)
2. ‘T contains a distinguished node ‘R’ all the root of tree T and raman ng nodes o
‘T" forms an ordered pair of disjoint binary trees T, and T, T, and T, are called

left and nghtsubtreesof ‘R". Any node ‘N’ narma-y trees has edher 0, 1 or

/ \ : - successors. U
/ "\
T T

/ \ / \ / \ / \ ' The nodes with no successors are called termnal nodes
Sequential representation of trees :
REE [K], then, it's left child

Root ‘R' of ‘T" is stored in TREE [1]. It a node 'n’ occupees TR

The depth ‘D, of complete the with ‘n' nodes is given by,
D, = log, n + 1 stored in TREE [ 2°K] and its right child is stored in TREE [2° K + 1
A binary tree ‘T' is said to be a true tree or extended binary tree if each node *n' has A
ner O or 2 children. The nodes with 2 children are called internal nodes and nodes with 0 TREEK=/a|8|c|D|E|F|G 1 T| | | H
1 -‘ 3 ” 5 6 r 8 s ...L ._%.4.:'4.“._.

Idrens are called external nodes



98

P
A

E

A\C
/N
4

H

LO3D> Data Structure & A|gol'ith|-ns

Q 26. A binary tree has 11 nodes. Inorder and postorder traversals are givep,

below :
Inorder : DBFEAGCLJHK

Postorder : DFEBGLJKHCA
Draw the tree.
Ans.

B/A\C
FAW Y

v
/

L

£

(PTU, May 2005)

Q 27. A binary tree has 9 nodes. The inorder and preorder traversal sequences

are given below :
‘Inorder:EACKFHDBG
Preorder: FAEKCDHGB
Draw the tree.
Ans. Here, Inorder: EACKFHDBG
Preorder : FAEKCDHGB

(PTU, Dec. 2005)

Trees =
Q 285-::::':::.;;]1:,::' :at'fl elements X4y X3y veney X, are sorted in descending
order, 1 Wh il > e Inserted into an empty binary search tree. Generate
the final tree. What will be the depth of this tree? (PTU, Dec. 2005)
Ans. The tree will consist of one branch which extends as follows :

x‘l

/

X,

/

xI'l
Since T has a branch with all n nodes, thus, depth, D = n. o~

Q 29. Write a procedure for inorder traversal of a binary tree. What will be inorder
and post order traversals of following binary tree? (PTU, May 2008)

Ans. The procedure of inorder traversal in *
1. Tranverse the left subtree of R in inorder.
2. Process the root R.
3. Traverse the right subtree of R in inorder.
Preorder travesal
80, 70, 50, 20, 30, 75, 73, 74, 100, 98, 105, 101
Inorder traversal
20, 30, 50, 70, 73, 74, 75, 80, 98, 100, 101, 105
Post order traversal
30, 20, 50, 74, 73, 75, 70, 98, 101, 105, 100, 80

Q 30. What are the different ways for traversing a binary tree. Draw a binary tre
for the following algebraic expression :

[a+(b-c)]*[(d-e)(f+g-h) -

Explain pre order and post order traversals of the binary tree (by using examg
of constructed binary tree for the above expression). (PTU, May 2011 ; Dec. 20(

Ans. Let E denote the following expression : '

Eifa+(b-c)*[d-e) (f+g-h)



LO3D> Data Structure & A[goﬁthrﬂs
100 |

in di i below. One can varif
The corresponding binary tree T appear in diagram gwezs T Y the
inspection that the preorder and post order travesales of T are
(pre order) *+a—b c/—de—+fgh*
(postorder)abc—+de—-fg+h—/ _
one can verify that these orders corresponds

notation of E. +/x\/
7% N
aPaTA

f g
Tree representation of E (expression)

Q 31. Constrict a binary search tree to accommodate the given list of inte
47, 56, 23, 17,64, 36, 29, 22,
Ans. 47, 56, 23, 17,64, 36, 29, 22

' precisely to prefix and post fix Poligy,

gers,
(PTU, May 200g)

-

47

17 36

22 29
Q 32. Find the order, preorder and post order sequence of nodes of the above

tree. (PTU, May 2009)

Ans.
Preorder

47 23 17 22 36 29 56 64
Inorder

17 22 23 29 36 47 56 64
Post order

. 22 17 29 36 23 64 6 47

Q 33. Write C functions which take
following :

The number of leaves in T. it
The number of nodes in T that contain one NON Null child.
The number of nodes in tree that contain exactly two non null Children.

(PTU, May 2010)
af nodes in the left

a pointer to the binary tree T and compute the

Ans. The number of leaf nodes in a tree is equal to the sum of le

g

Trees

leaf nodes |
subtree and In the right ¢
tree is empty than the numpe, blree of a given nod

then the number of leaf nogeg i
¥ The following function in o
typedef struct BST noge
struct BST_node*left ;
int item ;
struct BST_node *right
}BST;
int leaf Nodes (BST *tre,
( :
if (tree = = NULL)
return O ;
else if ((tree — left =
return 1 ;
else

101

e. Note that if the binary (search)
there is only one node in the tree,

of non-leaf jg Zero and if
S equal to 1,

lan ; .
{ guage shows the implementation of various steps required.

e)

= (BST*) NULL) && (tree — right = = (BST*) NULL))

return (leafnodes (tree s left) + leafnodes (tree — right)) ;
} L

Q 34. Draw binary tree for

(@=b)/((c* d) + e)) and find out the inorder, preorder
and post order traversals.

‘ (PTU, Dec. 2007)
Ans. The expression tree for the expression (@=Db)/ ((c*d) + e))

@ ®

OO0
The traversals of the above expression tree gives the following result.
Preorder: (/-ab +* cde)
This expression is same as the
Inorder : (a-b) / ((c * d) + e)
Thus in order traversal gives the actual expression.

Thus the postorder traversal of this gives us the “Postfix notation” or the “Revers:
polish notation” of original expression.

prefix notation of the original expression.

Q 35. What are the various binary tree traversal techniques? Discuss with examp!
and algorithm. (PTU, May 2019 ; Dec. 201
| Ans. Traversing Binary Trees : There are three standard ways of traversing a binz
tree T with root R, These three algorithms, called preorder, inorder and postorder are as follow



1. F'rocesS the root R
3 Transverse th '

ransverge th
Inor. der :

LO3D> Data Structure &Mgo"ithrns

@ left subtree of R in preorder.
@ right subtree of H in preorder.

1.
5 Traverse the left subtree of R in inorder.
- Process the root R,

- Tranverse the right subtree of R in inorder.

Postorder -

1. Transverse the left subtree of R in postorder.,

2. Tranverse the right subtree ,of R in postorder.

3. Process the root R.

Observe that each algorithm contains the same three steps, and that the left
R is always transversed before the right subtree. The difference between thé al
the time at which the root R is processed. Specifically, in the “pr
Processed before the subtrees are traversed, in the
between the traversals of the subtrees and in the “p
after the subtrees are traversed.

The three algorithms are sometimes called, respectively, the node-left-right (NLR)
transversal, the left-node-right (LNR) traversal and the left-right-node (LRN) traversed.
Observe that each of the above traversal algorithms is recursively defined, since the
algorithm involves traversing subtrees in the given order. Accordingly, we will expect that 5
stack will be used when the algorithms are implemented on the computer.
Example : Let E denote the following algebric expression
[a+(b-c)*[(d-e)/(f+g-h)
The corresponding binary tree T appears in fig. The reader can verify by inspection that
e preorder and postorder traversals of T are as follows :
(Preorder) *+a-bc/-de-+fgh
(Postorder)abc-+de—-fg+h—/*

The reader can also verify that these orders corresponds precisely to the prefix and

tfix polish notation of E as discussed in sec. We emphasize that this is true for any algebric
ression E.

Subtree of
gorithms g
e" algorithm, the root R is
“in” algorithm, the root R is processeq
ost” algorithm, the root R is processeq

ing F, S, & K G LH, T, vy
inary tree of degree 3,

result of

n empty b

th
hoW
a 36'1;39 order 19

_+ is complexity of binary search algorithm?
iy rformance O(log n)
Average case pe
SRS (st case performance O(log n)
g:st case performance 0(1 )
Worst case space complexity O(1)
Q 38. Write an algorithm for binary search. What are its limitations?(PTU, May 2011)
?nsl;mitialize an ordered array, search array searchno.length
Initialize low = 0 and high = llength
Repeat step 4 will low < = high.
Middle = (low + high) 12.
If search arrays [middle] = searchno
Search is successful
return middle

(PTU, May 201
@ 37. Wh e

[0 S A

else if

search array [middle] > search no [high]
high = middle — 1
else

low = middle + 1.

Q 39. How searching is beneficial u.si-ng bi“"?' A binary search
Ans. Binary search is an extremely efficient a@m; way.
free in which the data in the nodes is ordered in a partic

traversal
ous ways of
Q 40. What do you mean by traversal? Also explain vart PTU, Dec. 20
trees.

Ans. Tree Traversal refers to the prof:esss
Node in a tree data structure, exactly once, ina
- two types
by the order in which the nodes-are visited. The are

201
trees? (PTV, De. &
tree is a bina

of visiting (examining m, ersals are cass’

ic way. S e
ystematic way o traversal n trees ar

- = “ﬂm ng



104 LO3D> Data Structure & AlgDrithms

1. DFS
2. BFs
1. Depth-first search (DFS) is an algorithm for traversing or searching a tree, treg
Structure, or graph. One starts at the root (selecting some node as the root in the graph Casg)
and explores as far as possible along each branch before backtracking.
2. Binary Tree : To traverse a non-empty binary tree in preorder, perform the fO”OWing
Operations recursively at each. node, starting with the root node :
1. Visit the root
2. Traverse the left subtree
3. Traverse the right subtree
To traverse a non-empty binary tree in inorder (symmetric), perform the iollowmg
operations recursively at each node : »
1. Traverse the left subtree
2. Visit the root
3. Traverse the right subtree.
To traverse a non-empty binary tree in postorder, perform the following Operationg
recursively at each node :
1. Traverse the left subtree
2. Traverse the right subtree

. 3. Visit the root.
R In graph theory, breadth-first search (BFS) is a strategy for searching in a graph
when search is limited to essentially two operations : (a) visit and inspect a node of a graph :
gy (b) gain access to visit the nodes that neighbour the currently visited node. The BSF begins

at a root node and inspect all the neighboring nodes. Then for each of those neighbour
nodes in turn, it inspects their neighbor nodes which were unvisited, and so on.
Q 41. What do you mean by spanning trees? Explain with the help of diagrams,
(PTU, Dec. 2011)
Ans. A spanning tree T of a connected, undirected graph G is a tree composed of all
the vertices and some (or perhaps all) of the edges of G. Informally, a spanning tree of G is
a selection of edges of G that form a tree spanning every vertex. That is, every vertex lies in
the tree, but no cycles (or loops) are formed. On the other hand, every bridge of G must
- belong to T.
A spanning tree of a connected graph G can also be defined as a maximal set of edges
of G that contains no cycle, or as a minimal set of edges that connect all vertices.
In certain fields of graph theory it s often useful to find a minimum spanning tree of a
weighted graph. Other optimization problems on spanning trees have also been studied,
including the maximum spanning tree, the minimum tree that spans at least k vertices, the
minimum spanning tree with at most k edges per vertex (Degree-Constrained Spanning Tree),
the spanning tree with the largest number of leaves (closely related to the smallest connected
dominating set), the spanning tree with the fewest leaves (closely related to the Hamiltonian
path problem), the minimum diameter spanning tree, and the minimum dilation spanning
tree.

ees
L 105

Q 42. What is tree data structure? What are different ways of traversing a tree?
. (PTU, May 2014)
Ans. A tree is a widely used abstract data type (ADT) or data structure implementing

this ADT that simulates a hierarchical tree structure, with a root value and subtrees of children,
represented as a set of linked nodes.

A tree data structure can be defined recursively (locally) as a collection of nodes (starting
at a root node), where each node is a data structure consisting of a value, together with a list
of references to nodes (the “children”), with the constraints that no reference is duplicated
.and none points to the root.
Different ways of traversing a tree :
(i) Depth first traversal :
(a) Inorder
(b) Preorder
(c) Post order
(ii) Breadth first traversal
Q 43. What are the advantages and disadvantages of threaded trees?
(PTU, May 2014
Ans. Advantages :
1. By doing threading we neglect the recursive method of traversing a tree, which make
use of stack and consumes many memory and time.
2. The node can keep record of its root.
Disadvantages :
1. This makes the tree more difficult.
2. More prone to errors when both the child are not present and both values of noc
‘pointers to the ancestors.
Q 44. Design an algorithm to find out if the binary tree is :
‘Strictly binary
Ans. Strictly binary :
# de"e True 1

(PTU, May 20



. 108

# define False 0
Int is strictbinary tree (struct tree & n)

{
if (n = = null) retum True ;
if (n — left | = Null & & n — right ! = Null)
return (is strict Binary Tree (n— lgﬂ} &8&
is strict Binary Tree (n — right) ;

if (n — left == Null and n — right = = Null)
return True ;

- return False ;

}

from the following expression and traverse it using all possible tree traversals.

(A'B/C)‘D+E+FI(G+H).

nodes are visited.
Pre-order
1. Visit the root.
2. Traverse the ‘left subtree.
3. Traverse the right subtree.
In-order :
1. Traverse the left subtree.
2. Visit the root.
3. Traverse the right subtree.
Post-order :

1. Traverse the left subtree.

2. Traverse the right subtree.
3. Visit the root.
(A*B/C)*D+E+F/(G+H)
Pre-order : **A/bc + + de + /fgh
Post-order : abc/*de + fg/ h + /*

Q 46. How a binary tree can be represented as array structure? (PTU, May 2013)
Ans. In case of array representation of binary A '
trees, the root ‘R’ of tree ‘T"is stored in tree [1]. Ifanode o/ \, —»
n' occupies tree [K], then it's left child is stored in tree /B} Z\
2* K] and its right child is stored in tree [2* K + 1], 2 =
Q 47. How an element is searched in BST.
Ans. 1. Start at the root node.

|a]8]c][o]e]c]

(PTU, Dec. 2013)

mez; Ol; tﬂ:'e :ehllf that.you are searching for is less than the root node, move to the left child
: ode, if the item that you are searching for is more than the root node, move to the

LoxD> Data structure & Algorithmg

Q 4'5 Name various tree traversal algorithms. Create a binary expression tree

" (PTU, Dec. 2012)
Ans. Tree traversal refers to the process of visiting each node in a tree da.ua str'ucture',
'exactly once, in systematic way. Such traversals are classified by the order in which the

r

07
Trees 3

ght child of the root node and if it is equal to the root node, then you have found the item ihat

g are looking for.

3. Now check to see if the item that you are searching for is equal to, less than or more than
{he new node that you are on. Ag_ain if the item you are searching for is less than the current node,
move 10 the left child, and if the item that you are searching for is greater than the current node,
move to the right child.

4. Repeat this process until you find the item that you are looking for or until the node
doesn't have a child on the correct*branch, in which case the tree doesn’t contain the item

which you are looking for.

Example : Suppose we want to search the element 40.

Q 48. Construct the binary tree for the following expression (2x+5) (3x-y+8).
Give the sequence obtained when tree is traversed in post order form.

(PTU, Dec. 2013)
Ans.

'Q 49. Write the algorithm for post-order tree traversal. Also show the steps

this algorithm on a set of numbers to shown an example. (PTU, May 2
Ans. Algorithm

1. Set Top = 1, stack [1] = Null and Ptr = Root.
2. Report steps 3 to 5 while Ptr = null.
3. Settop = top + 1 and stack [top] = Ptr.
4. If Right [Ptr] = Null, then :
set Top = Top + 1 and stack [Top] = —Right [Ptr]
Set Ptr = Left [Ptr]
. Set Ptr = stack [top] and Top = Top-1
7. Repeat while Pir > O}
(a) Apply process to Info [Ptr]
(b) Set Ptr = stack [top] and Top = Top-1
8. If Ptr<0,then;
(a) Set PTR = -PTR
(b) Go to step 2
9. Exit.

o o



Q 50. Make a binary search tree ang a heap tree from the given data :

237926121440442021
ns.

Heap tree :
23 7 92 6 12 14 40 44 20 21
92 92

23 82 92
F / /
7/ = ?/ \23 = /? \23 ;/12\ \23- = /12\ 23
6 7

82 92 92 92

/ i / 4
i 127 >c\ N /4‘{ ,>0 :>20/44\7 >0 - /44\ \40

2 7 20 21 /
14 23 7 d 14 \23 /\ 14 \23 /\ / 14 \53
5 6 12 6 12 7

Q 51. Define AVL and B-trees and their applications ? Explain various operations
used for balancing a binary tree with the help of a suitable example ?

(PTU, Dec. 2014)
Ans. AVL tree : Refer o QO No. 13

B-trees : Refer to QO .No. 76 (a)
AVL trees are applied in the following situations :
O There are few insertion and deletion operations.
O Short search time is needed
U Input data is sorted or nearly sorted.
AVL tree structures can be used in situations which require fast searching. But, the
> Cost of rebalancing may limit the usefulness.
Q The main area for B-trees is databases (DBs)
There are DBs larger than terabyte (-

10" bytes) and B-trees are useful in such
applications.

LO3XD) Data Structure & Algorithms

(PTU, Dec. 2014}

—— - = Re B e

-

e . s
O Btrees have also been useq o Systams 109
It is not uncommon that one hag e
pandles even more files,

; € even applicaple | f
n entries that In file systems.
Whe are already soreqy stored in g tree, all new records will go the same

: are
r{;;:;e.[:;tdlj:ge‘: eae;l VE‘:;‘:::E?(;T; l:s ch]ﬁ.;.I Tnf'LrJerzere the tree needs balancing routines, making
free at optimal speed. Specificaiiy, if a tree wil;? ne;[?;;:f: r: ;:s;?:;an:ekf :p st.ﬁar:; i T l;i.
through the .lree will be n nodles, ifitis a balanced tree, the lor:g&st path \.:ns?‘be ?oc_? :g::d,:s,

'Algolrlthl'!‘lSo"LEft__rOtatlon * This shows how balancing is applied 1o establish a priority
heap invariant in a Treap, a data structure which has tne Queueing performance of a heap,
~and the key look up performance of 4 tree. A balancing operation can chan 3e the tree structure
while maintaining another order, which is binary tree son grder. Tne binary tree order is left to
right with left nodes’ keys less than right nodes’ key whereas the priority order is up and
down, with higher nodes priorities greater than lower nodes priorties. Alternatively, the priority
can be viewed as another ordering key, except that finding a specific key is more involved.

The balancing operation can move nodes up and down a tree witnout atfecting the left right
ordering. A balanced binary tree has the minimum possible maximum neignt for the leaf

nodes, because for any given number of |eaf nodes ¢ =

height possible.

Example :
ABCDE

56\

;
ne leaf nodes are piac

2 at the greatest

Q52. SupposeHis a complete binary tree with n elements then in what conditions,
'H is called a maxheap ? (PTU, May 2015)

Ans. Suppose H is a complete binary tree with n elements. Then H is calied a heap or
mexheap, if the value at N is greater than or egual U

Q 53. State different ways of traversing binary tree.

Ans. The binary tree can be traversed in three ways :

1. Inorder

2. Preorder

3. Postorder _

Q 54. What is Binary Search Tree (BST) ? Make a BST for the following sequence
of numbers and Traverse the tree in Preorder.

45, 36, 76, 23, 89, 115, 98, 39, 41, 56, 63, 48

Wl vawde

y ¢f the children of N.
(PTU, May 2015)

(PTU, May 2015

is a binary tree eact 1 ~oce of which satsties the followin
Ans. A binary search tree B is a binary tree each ~oae of which satisties t N
conditions. o
1. The value of the left-subtree of *x' is loss than the value al ' .
- 2 grealer than the value al 'x
2. The value of the right-subtree of ‘X" is grealer than the value a



|

Data Structure & Algo:
110

LO3D>

are again binary searq
8. The left-subtree and right subtree of binary search 1ree : : ty

Preorder :

23, 36, 39, 41, 45, 48, 56, 69, 76, 89, 98, 115
Q 55. What are the advantages of AVL tree and B-tree?
Ans. Advantages of an AVL tree :

(a) The height of an AVL tree is guaranteed to be < = 1.45 logzn where nis the nump,

(PTU, May 2015)

of nodes.

Hence, all operations are O(log,n). .
(b) Any imbalance caused by an insertion or deletion can be corrected by just ong g

two rotations.

Advantages of B-Tree : B Trees take advantage of this by maintaining a balanceq

binary tree structure through the use of two files :

O Index file : It contain all the keys and tree's topology is represented by the

organization of data in this file.

0O Data file : A file that contains all the objects and information stored by the “tree”,
Objects contained here are referenced by block pointer references stored in the
index file. '

Q 56. Give two max heaps of size n each, what is the minimum possible time

omplexity to make a one max heap of size from elements of two max heaps ?

(PTU, May 2016)
Ans. O(n), because we can build a heap of 2n elements in O(n) time. Following are the

ps. Create an array of size 2n and copy elements of both heaps to this array call build

ap for the array of size 2n. Build heap operation takes O(n) time.
Q 57.

For the given Graph perform following operations :I
a) Find its adjacency list.

special pointers which point to node higher in the tree.

S 4
r asentatio"‘ for adjacency list and edge list, 11 :
= ) storag® repr
()= its

ix. - : e
(© Find Th:a;;a'::‘ea:\r-cy list for the given graph is (PTU. May 2016)
Ans- (a) Neighbors
Node (8, C, D}
A (A, C, E}
g {0, F}
{E. F}
i {F)
- -}

(6) 99 L B, (AC). (A, D); (B ©). (B, ). C,D), G, ). 0. ), (0,), (€.

h matrix : Let G be a simple directed graph with m nodes vy, vy, ..... v, The path
(c pat

hability matrix of G is the m-square matrix P = (p;) defined as follows :
reac
matrix Of

1 If there.is a path from v; o v;
Pi=l0 otherwise

the graph as follows :

re to delete a node from

A pro?:g LE|MFO LINK, START, AVAIL, ITEM, FLA_G) .

DELE;E What are’ the threaded binary trees ? Discuss different operations of node
Q 58.

- PTU, Dec. 2016)
i these trees. par
insertion and deletion in B

2

What is a threaded binary tree? How this type of tree helps in ui:\-;re‘;:s: _av e
Ans. Threaded binary tree is used to remove t:;e
null pointers. Suppose in'a tree t:nalf of tr.\e entries in te
ointer fields LEFT and RIGHT will contain null e\errllen_ S.
?l‘his space may be more efficiently used by rep asmng
the null entries by some other type of lnformla iob.

Speciﬁcaliy, we will replace the certain null entries by o]~

These special pointers are called lhreads. The threads
in a threaded tree must be distinguished iq some way
from ordinary pointers. The threads in a diag@m of la
threaded tree are usually indicated by dotted lines. r;
computer mémory an extra 1 bit TAG ﬁe_ld may be use
to distinguish threads from ordinary pomt§rs. reaied BWTY .
The following operations can be defined on a -
Q Insertion of a node into a threaded bll:taly Tee-
Q Deletion of a node from a threaded binary :‘fﬁn-such .
The insertion and deletion have to be carried 0
the tree remains the inorder threaded binary 1ree:

One-way In order
threading

ral
way that after the o€




112

Insertion :

2. When node X is inserted as right child of node Yand node Y has an empty right chilg
3. When node X is inserted as left child of node Y and node Y has a non-empty left cpy,
4. When node X is inserted as right child of node Y and node Y has a non-empty righi
child.
Deletion :
1. When X is a left leaf node.
2. When X is a right leaf node.
3. When X is only having a right sub-tree
4. When X is only having a left sub—tree
5. When X is having both sub-trees.

Q 59. Write an algorithm to find minimum and maximum element from a bina,
search tree.

(PTU, May 2017)
Ans. Algorithm to find minimum & maximum element in a binary search tree
For minimum ' :
1. Start from root node
2. Go to left child

O Keep on iterating (or recursively) till, we get left child as null

O We found the minimum value in binary search tree.
For maximum

1. Start from root node
2. Go to right child

O Keep iterating (or recursively) till we found right child as null. .
O We found the maximum value in binary search tree.

Q 60. What is binary search tree? Draw the binary search tree for the following input:
14, 5, 6, 2, 18, 20, 16, 18, 9, 21 )

Ans. Binary search tree : Refer to Q.No. 6

(PTU, May 2018)
Binary search tree

14 14 /14 /14 /14\
5 5 5 18
\ /\ /\
6 2 6
(a) (b) (c) (d) (e)
/14 /14\ /14\ /14\ /14\
5 18 5 18 5 18 5 18 5 18
\ \ /\ /\ £ £\ '\ [\ /\ /\
6 20 2 6 16 20 2 6 1|6 20 2 ti‘. 1|6 20 2 ? 1|6 2‘0
18 9 18 9 18 21
(f) (9) (h)

| 2

LO3ID> Data Structure & A|9°rith
% {rees supose @ binary tree T is in memory.
a 61 :
1. When node X is inserted as left child of node Y and node Y has as empty left chil

Write a Procedure to delete al: 1\:
nal nod?:;;:dure to delete leaf node from bineary tree : . 201:}
"‘.nsiufs; <bits/std C++h> |
mq:\g namespace std;

n;; uct nodel
int datd:

de * left;
guct NOUB- "0 2
Ztruct Node * right;

ﬁtruct Node * New Node (int data)

{E‘struct Node * temp = New Node;
temp data = data;’

temp = left = temp — right = NULL;
return temp;

}strucl Node * insert (struct Node * int data)

%f (root == NULL) !

return New Node (data);

If (data < root — data)

root — left = insert (root — left, data);
else If (data > root — data)

root — right = insert (root — right, data);
return root;

void inorder (struct Node * root)

If (root | = NULL){

inorder (root — left);

cout <<root —» data << “ ™,
inorder (root — right);

}
}
struct Node *

|eaf Delete (struct Node * root)
‘4

If (root — left = = NULL && root — right = = NULL) {
free (root);

return NULL;
}

root — left = leaf delete (root — left);

root — right = leaf delete (root —> right);
return root; :

)

int main ()



114

\
{

f;;t:ct Node * root = NULL;
\ = Insert (root, 20); ’
Insert (root, 10); '
insert (root, 5); '
insert (root, 15);
Insert (root, 30);
insert (root, 25);
insert (root, 35);
cout <<“Inorder before deleting t
inorder (root);
cout <<endl;
leafdelete (root);
cout <<‘“Inorder after deleting
inorder (root);
return O;

}
Q 62. Are B trees of order 2 are full binary trees ? If yes,

LO3D> Data Structure & Algorit,
My

he leaf node “<< endl;

the leaf node”<<énd;

explain how.
; (PTU, May 201g)
Ans. B tree of order 2 is fully binary tree. In order for the B tree to function there needs
be a choice in the number of keys. This means that the smallest possible B tree node s
» that has either one or two keys. That's basically a (2, 3) tree and reportedly that's exactly
v B trees were invented as a generalisation of (2, 3) trees.

Q 63. Discuss recursive procedure in trees. ~ (PTU, May 2019)

Ans. A recursive procedure is an algorithm that handles a list of items, where each item
be itself a list by decomposing the process into the handling of the first item of the list &
v this by the handling of the remainder of the list. A recursive procedure is a way of
ng problem that contain a number of item to be processed. The major problem that can
r-in recursive structures is circularity. A tree is not circular. There is no problem in these
ures. Because circularity is an undesirable property, a program that verifies whether an

g recursive data structure contains circularity is required.
aaa

’
chaptef

4

i f different sorting algori
e nd propertles o g algorithms : Select
Ome‘{cw:sort. Quick Sort, Merge Sort, Heap Sort ; Performance a::incio

nsi:;omethods-' Hashing.

Sorting and Hashing

rt, Bubble Sort,

| Mparison among

all

POINTS TO REMEMBER @'_1

actually ref

ers to the operation of arranging data in i
: some given
ST croasin. given order, such as

with_ numerical data, or alphabetically with character data
orting iS a process of arranging the elements in a particular order. .

enerally classified as either internal or extemnal. In an intemal sorting, all th
re held in primary storage during the sorting pro i emso[mmh‘g‘soni neg
storage for the elements currently being sorted and secondary storage for
any data that does not fit in primary memory.

ertion sorting, We choose a particular element and then insert it at the appropriate
locaion in the sorted subarray.

& In éélection sort, we repeatedly find the next smallest element in the list and move it to its
final position that it will occupy in the sorted array.

& Merge sort is based on the divide and conquer: strategy in which we divide the data into
smaller pieces, recursively conquer each piece and merge the result into a final result.

& Bubble sort algorithm is used for sorting a list.

& Bubble sort algorithm compares two numbers at a time and
wrong order.

& Quick sort is one the fastest so

¥ Merge sort is @ comparison pased sorting algorithm. )

' i i i comparison sort.
¥ Selection sort is a sorting al m, specifically an in-place compa

gorith
& Time complexity of selection sort algorithm is O (n?).
¥ |nsertion sort is a simple sorting algorithm in which the s0
entry at a time. |
i¥ Hashing is the most e
in only one comparison.

gorting
increas

& S
sorting is 9
elemems a
uses primary

‘@ Inins

swapsmemii\myarain

rting algorithm used for sorting @ list.

red array (Of list) is built ¢

find the |
fficient search technique in which we could probably

115



| ¥ Hash ta'b!e Is an array of some constant size which
| - data efficiently so that it can be retrieved quickly.

QUESTION-ANSWERS

Q 1. What do you mean by sorting? )

Ans. Sorting actually refers to the operation of arranging data in some given o
such as increasing or decreasing, with numerical data, or alphabetically,

Q 2. What do you mean by external sorting?

Ans. External sorting is a term for a class of sorting algorithms that can handle mass
amaunts of data. External sorting is required when the data being sorted does not fit intg
main memory of a computing device (usually RAM) and a slower kind of memory (usuaj|

- hard drive) needs to be used. '

_ One example of external sorting is the external mergesort algorithm.

Q 3. Explain the bubble sort algorithm.

Ans. Bubble sort algorithm is used for sorting a list. It makes use of a temporary variablg
for swapping. It compares two numbers at a time and swaps them if they are in wrong order,
This process is repeated until no swapping is needed. The algorithm is very inefficient if the
list is long.

eg. List:7453
1. 7 and 4 are compared
2. Since 4 < 7, 4 is stored in a temporary variable. }
3. The content of 7 is now stored in the variable which was holding 4.
4. Now, the content of temporary variable and the variable previously ‘holding 7 are
swapped.

Q 4. What is quick sort?

! rder
with character gag,'

i\p‘g
the

(PTU, May 2015)

{ 116

LO3D> Data Structure & Ngoﬁthms

shing . g 5 = p
and e mparison based sorting algorithm. The in 17
: :Aco Put org
is used for sorting and mai“tainir;g 5arﬂ"g sort eris Preservaq

| ¥ Direct, division, midsquare, folding methods are the mpst commonly used hash functi.;,,.l

Ya |

Marge Nthe

ut. i is as follows :
outP jgorithm
sﬂf‘adﬂerg > ﬁ::g?hgof the list is 0 or 1, and then it is considereg
.The

ek as so;
ise, divide the unsorted list into 2 lists each abo sied.

Ut half the gize,

2.

i ively. Implement the step 2 til
ch sub list recurs r e g
3. ﬂai?na; step, combine (merge) both the lists back intg one sme(:':: are sorted. .
L ion sort? s
! t is selection _ . . i
90 Wh’aecﬁon sort is a sorting algorithm, specifically an in-place Ggmpaﬂa“:rv 2019)

: ‘?:,e complexity, making it inefficient on large lists, and generally Deﬂoms::;,:;
= ) jlar insertion il s?ﬂ S n::)ted for. o simplicity, and also has Performance
pen > SW: over more complicated algorithms in certain situations, particularly where auxiliary

s :
ﬂdv::a is [imited.
i Algorth ™ © rrent position.
t first position as cu position.
o inimum value in the list.
Find the minim _
= swap it with the value in the current position.
' i gSet next position as current position. _
5. Repeat steps 2-4 until you reach end of list.
a 7. What is insertion sort? N

|

Ans. Quick sort is one the fastest sorting algorithm used for sorting a list. A pivot point |

is chosen. Remaining elements are portioned or divided such that elements less than the
pivot point are in left and those greater than the pivot are on the right. Now, the elements on
‘the left and right can be recursively sorted by repeating the algorithm.
Q 5. Explain quick sort and merge sort algorithms.

-~ Ans. Quick sort employs the ‘divide and conquer’ concept by dividing the list of elements
into two sub elements.

The process is as follows :
1. Select an element, pivot, from the list.

Ans. Insertion sort is a simple sorting algorithm in which the sorted array (or list) is buift
oneentry ata time. It is much less efficient on large lists than more advanced algorithms such
s quicksort, heapsort, or merge sort. However, insertion sort provides several advantages:

e Simple implementation

e Efficient for (quite) small data sets _

e Adaptive (i.e., efficient) for data sets that are already substantially sorted : the time
complexity is O (n + d), where d is the number of inversions.

More efficient in practice than most other simple quadratic (i.e., O (n2)) algorithms
such as selection sort or bubble sort ; the best case (nearly sorted input) is O (n).
Stable ; i.e., does not change the relative order of elements with equal keys.
In-place ; i.e., only requires a constant amount O (1) of additional memory space.
Online ; i.e., can sort a list as it receives it. '

Q 8. Comparison of insertion sort with selection sort algor_ithms. |
Ans. Insertion sort is very similar to selection sort. As in selection sort, after k passes

| trough the array, the first k elements are in sorted order. For selection sort these .art:h I;
smallest elements, while in‘insertion sort they are whatever the first k elements were :;d >
\nsorted array. Insertion sort’s advantage is that it only scans as many elements ats :can F
o determine the correct location of the k+1st element, while selection sort mus
[maining elements to find the absolute smallest element.
Calculations show the insertion sort wil usually perform about

2. Rearrange the elements in the list, so that all elements those are less than the pivot
are arranged before the pivot and all elements those are greater than the pivot are |
arranged after the pivot. Now the pivot is in its position. ; |

3. Sort the both sub lists - sub list of the elements which are less than the pivot and the

list of elements which are more than the pivot recursively. half as many comparisons

4__-#



LO3D> Data Structure &Algmu‘ms

118 _.
as selection sort. Assuming the k+1st element’s rank is random, insertion sort will on aver,
require shifting half of the previous k elements, while selection sort always requires scany, b

serton sort performs as "‘ﬁny

s reverse-sorted, in
ady sorted, insertion sort performg %

efficient when given sorted or --man!l

all unplaced elements. If the input array i

- comparisons as selection sort. If the input array is alre

few as n-1 comparisons, thus making insertion sort more
--sorted” arrays:

Q 9. Explain heap sort. _ . (PTU, May 2'.'!131|

Ans. The binary heap data structures is an array that can be viewed as a compjg ge @ i

s ﬂ’lﬂu omplete

ponds to an element of the array. The al'fay emams co
- o

binary tree. Each node of the binary tree corres
is completely filled on all levels except possibly lowest.

ode with key 15 to the heap. First, we add the node to

lowest level of the tree. This is to ensure that the tree

ailable at the

- nose W
Let's sUeF'lI:e o« spot av

ey 15 to the heap. First, we add the node to

y corresponding t,
| c_)i the tree. This is to ensure thal the tree

e want to add a node with k

We represent heaps i
the heap above is [25, 18, 17, 5, 8, 3]. LB ' / el
The root of the tree A [1] and given index i of a node, the indices of its parent, left chiy I| Let's supp ot available at the lowest leve
‘and right child can be computed potree & the Teet);t sp _
. PARENT (i) remains compiets:
return floor (i/2)

LEFT ()
return 2
RIGHT (i)
return 2i + 1 ¥ :
Let's try these out on a heap to make sure we believe they are correct. Take this heap,

n level order, going from left to right. The arra

omparing the new node to its parent. Since 14 <

4,17, 8,6, 9, 4, 1].
dex of the 20 is 1. To find the index of the left
o right, so We

Which is represented by the array [20, 1

we'll go from the 20 to the 6 first. The in
child, we calculate 1*2 = 2. This takes us (correctly) to the 14. Now, we g

calculate 2*2 + 1 = 5. This makes us (again, correctly) to the 6.
" Q 10. How elements are inserted in heap? -
Ans. Suppose we have a heap as follows :

Now element are inserted because 15 < 20.



120. ;

--....________-_-—__

LO3D> Data Structure &Alg‘-"ﬂth
Q 11. What is the complexity of merge sort?

3
(PTU! Dac. 20%
Ans. Complexity of merge sort is as follows : ,

(i) Worst case : O (n log n)
(i) Average case : O (n log n)
(iij) Best case : O (n log n).

Q 12. Write the time complexities of quick sorting method.

(i) Best case : O (n * log (n))
(ili) Worst case : O (n2).

Q 13. What is the need for external sorting? (PTU, Dec.

20g
* -Ans. Extemnal sorting is a method used to sort elements which are two large to fit in t::
main. memory of the computer. Any sorting algorithms that uses external memory, such &
tape or disk, during sort is calléd external sort. Since most common sort algorithms

: assum
high speed random access to all intermediate memory, they are unsuitable if the values to h:
- Sorted do not fit in main memory. The main concern with external sorting is to

Minim;
external disk access since reading a disk block takes about a million times longer than aCCGSsing
an items in RAM. ; ’ -

Q 14. Write a program to sort integer using selection sort. (PTU, May 200¢)

Ans. In selection sort, first find the first position. Then find the second smallest
in the list and put it in the second position.

Suppose we want to sort the integers.
77, 33, 44, 11, 88, 22, 66, 55

elemen

| Pass,LoC A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[g] |
K=1,l0c=4 . (77) 33 44 @ 88 22 66 55
K=2,LOC=6 11 @ 44 77 88 @) e 55
K=3100=6 11 2 77, 8 () 66 55
K=4,L0C=6 11 22 33 (7)) e 66 55
K=5,LOC =8 1. 22 38 4 8 7 e @
K=6,L0=7 o2 8 4 s (7) 88
K=7,L0C=7. 11 22 33 44 55 g5 @ 88
—_ Sorted : L1122 35 44 5

Thus algorithm sorts the array A with N elements.

jord
o2 2 ecTioN (A N)
: R

4 _ (PTU, May 200
Ans. (i) Average case : O (n * log (n)) ; )

Hashing :

; 121
2and3forK=1,2, .. N-q1
epeﬂt steps “
1 CalMIN (A KN, LOC)
set TEMP =A[K], A [Kl=A[LOC] & A[LOC] = TEMP
3.INE(’;'E k' N, LOC) This algorithm finds the locat
M

K+1], -oeeee AIN] "
grong Nﬂ;ﬁ,m — AKI&LOC =K

RepeatforJ =K+1,K+2, ... N
if MIN > A [J], then :
Set MIN = AlJ], LOC =J

3. Retum.

Here, complexity = 0 (n?)

a 15. Sort the following list of numbers
52, 1, 27, 85, 66: 23, 1'3, 57

using any efficient sorting algorithm. .(mi "
Ans. The list of given numbers sorting using bubble so L

pass1i G () 27 -85 66 23 13 &7
1 & @ 8 66 23 13 57
127 (& 66 23 13 57
1 27 52 (9

23
1 27 52 66 @
27 52 66 23 {

57
57
57

13
13
®
27 52 66 23 13@

1
1
1 27 52 66 23 13 57 85
Pass2: (1) @) 52 66 23 13 57 85
1-@) () 66 23 13 57 85
1 ) (6o 23 13 57 8
®@ @ 13 57 85
1 27 52 23 @) (1) 57 85
1 27 52 23 13 (@) () 85

1 27 52 23 13 57 66 B85
Pass 3 : @ @ 52 23 13 57 66 85

1 @ @ 28 138 5 6 &

27
1 27 52



I 4

1 g HshI0S
22 . LO3D> Data Structure & AIgOrithp 5at'~'“g 2  from left 10 right 123
1 27 G @ 13 57 66 85 6. 5@ QUTTURET
1 27 23 5 (13 57 66 85 s® -
1 27 23 13 52 57 66 85 _ . soan from right to left :
Passd4: () @ 23 13 52 57 66 85 : SEHU"'T.UF'@T
1.@ @ 13 52 57 66 85 ' " goan from left to right”
1 23 @ (1) 52 57 66 85 _ 8. R(®TTURUT
1 28 13 27 52 57 66 85 SE
_Pass5: (1) @ 13 27 52 57 66 85 g, Scan from right to left
1 @ @ 27 52 57 66 85 : seRRTTU(®UT
1 «13 23 27 52 57 66 85 b
Pass6: 1 13 23 27 52 57 66 85 10. Scan from left to rig
Pass 7:  All elements are solved. - SERR @ TuTuy
e
Q 16. Sort the string DATA STRUCTURES using quicksort. (PTU, Dec, 2004) 1. @ ERR
Ans. (a) (D)ATA STRUCTURES | . scan from right to left to obtain :
1. Scan from right to left, until finding a character which precedes D alphabetically, jtjg | R @
C. Interchange D & C to obtain : E‘_E__,
CATASTRU(D)TURES : ®ER
2. Now, scan the list from left to right, until finding a character which succeeds p 12. Scan from right to left
alphabetically. It is ‘T". Interchange D and T. :
P! y g . E ® R
CA(DASTRUCTURES
: : 13. ® UTuT
3. Again scan from right to left to obtain, .
Scan from right to left
CAA(D)STRUTTURES TUTU®
: ety e 14. Scan from left to right
4. ©AA ol B TMTUUL
~Scan from right to left to obtain : i Hence the final result is
- AACDERRSSTTTUU
AA© - ing Bubble Sort :
' Q 17. Sort the following list of elements using Bu
988944753512100257 (PTU, M

5. (:)THUCTUHES ;
. What is its complexity?
Scan from right to left to obtain : _ Boxs

STRUCTURE (3) | © Pugs s 44 7 5

35 12 100 2 57

o
IR s B



LOID> Data Structure g Algoriy,
WS

124 ‘
-"‘-hu-._.__‘_‘_‘__‘__ -
89 @ 7 5 35 12 100 2 57
89 44 @ &5 3 12 100 2 57
89 44 7 ® 3 12 100 2 57
89 44 7 5 @ 12 100 2 57
89 44 7 5 35 G2 100 2 57
89 44 7. 5 35 12 @@ 2 57
89 44 7 5 35 12 98 (@ (2 57
89 44 7 5 35 .12 98 2 @@ @)
89 44 7 5 35 12 98 2 57 100
Pass 2 : 7 5 35 12 98 2 -57 100
44 @ 5 38 12 98 2 57 100
44 7 (® 38 12 98 2 57 100
4 7 5 @ 12 98 2 57 100
4 7 5 35 G2 98 2 57 100
44 7 5 35 12 2 57 100
44 7 5 35 12 89 @ 57 100
44 7 5 35 12 89 2 &) 100
44 7 5 35 12 89 2 57 98 100
Pass3: (9 (7) 5 38 12 89 2 57 98 100
7 (e 3 12 89 2 57 98 100
7 & @ 12 89 2 57 98 100
7 5 35 G2 8 2 57 98 100
7 5 3 12 (@) 2 57 98 100
7 5 35 12 44 @ 57 98 100
7 5 38 12 44 2 () () 98 100
7 5 35 12 44 2 57 89 98 100
Pass4: (7) (5) 3 12 44 2 57 89 98 100
5 (D @ 12 44 2 57 89 98 100
5 7 (@ (1@ 44 2 57 89 98 100
5'7 12 (3 2 57 89 98 100
5 7 12 35 (@ 57 89 98 100
5 7 44 57 89 98 100

12 35 2

" —

Hashiﬂg
ggﬁingand @ 12 3 2
5:
pass 5 @ @ 35 2 44 57 gg % 10
s 7 @ @ 2 44 57 gy g o
5 T b @ @ 44 57 gg % 100
5 7 12 2 35 44 5 gy gy j0
2 3
pgsSG: @ ® 12 5 44 57 g9 98 100
5 (D @ 2 35 44 57 gg o s
s 7 @ (@ 35 44 57 gy g3 4o
pass 7 * @ @ 2 12 35 44 57 g9 gg s
5 2 7 12 35 44 57 gg Bn w0
7 12 35 44 57T B9 g8 1g9

%% 44 °ET B3 98 1m0

pass 8 (? ©) L

pass 9 : All list are sorted.
q 18. Write a algorithm for sorting numbers using e

Ans. Algorithm :
Heap Creation Algorithm
[Create heap]

| Step 1.
Repeat through Step 7 fork =2, 3, .............. n
step 2. [Initialize] -
i=k
temp = data [k} _
step 3. [obtain parent of new element]
i=iR
Step 4. [Place new element in the existing heap]
Repeat through step 6 while (i > 1) and (temp > data [j})
Step 5. [Interchange elements] :
data [i] = data [j]
Step 6. [obtain next parent]
i=}
ji=112
if=(<1)thenj=1
Step 7. [copy new element value into its proper place]
data [i] = temp
Step 8. Return.

Heap Sort Algorithm

Heap_sort (data, n)
where data represent the list of elements

b
P

g— zr@?@

(PTU, May 2014)



| n represents number of elements in the list.
[Create initial heap]

o call Heap-Creation [data, nj
h e g:::ars?ﬁough step 10 for k =n, n=1, ccoesy 2
& | Step 3. [Interchange elements]
data [1] = data [k]
Step 4. temp = data [1]
i=1 " -
- j=2
Step 5. [Find index of largest child of new element]
If j+1 <k then
If data [j+1] > data [j] then
j=j
Step 6. [Recreate the new heap]
Repeat through step 10 while j < = k -1 and data [il> temp
Step 7. [Interchange element]
data [i] = data [j]
Step 8. [obtain left child]
i=]
j=2*i
Step 9. [obtain index of next largest child]
ifj+1 <k
If data [j+1]> data [j] then j=j + 1 else if j >n then j = 1
Step 10. [copy element into its proper place]
data [j] = temp
Step 11. Exit

Q 19. Write a short note on Hashing. (PTU, May 2006)

Ans. Hashing is a searching techniques which is independent of 'n’. Suppose thereisa

file ‘F" of 'n’ records with a set ‘K’ of keys which a uniquely determine records in ‘F. ‘F' is
maintained in memory by a table ‘T’ of ‘n” memory locations and ‘L’ is the set of memory
-address of locations in ‘T".
H:K->L
*H’ is a hash function, which gives a location in memory by applying on ‘K’. ‘K’ is uniquely
determined element.
Q 20. Define hash function. (PTU, May 2009 ; Dec. 2009, 2008, 2005)
Ans. Hashing is a searching technique which is independent of . Suppose there is a
ﬁle- P .of n’ records with a set 'K’ of keys which uniquely determine the record in ‘F'. ‘F' is
maintained in memory by a table ‘T of ‘n" memory locations, ‘L is the set of memory addresses
of location in ‘T : : '
H:K->L

Y

Hashi“.g : =
sddnga"d v lea hash or hashing functions which gives a iocation in memo
: re, ‘H ined ok ory by applying
here: any uniquely determined e ement. .

127

, K :sh cunction can be determined by the following methods -

1on o
i) pivision method
+ Mid s4 4
(i) Folding method.
21. What does Hashing mean? Explain the technique in detail.
e (PTU, May 2019, 2010, 2004 ; Dec. 2006)
" OR _
aihat 18 hashing? Discuss basic hash functions with example. (PTU, May 2007)
OR
what is hashing? Give the characteristics of hash function. Name different hash
AT P (PTU, Dec. 2009)
AnS. Hashing is @ searching technique which is independent of ‘n’, Suppose there is a
i of 'n’ records. With a set ‘Kot keys, which techniquely determines records in ‘F". ‘F* is
od in memory by a table “T" of ‘n" memory locations and ‘L’ is the set of memory

functions:

file .
maintain

addresses of locations in‘T".

H:K—>L
H' is a hash or hashing function which gives a location in memory by applying it on ‘K.

Hash functions : )
1. Division method : In this method, choose a no. m > n of keys in ‘K’, which may b

prime no. or & no. without small directions. The hashing function is
H (K) = K (mod m)
HK)=K(modm)+1 ~

2. Mid square method : The key ‘K’ is squared and ‘L’ is obtained by deleting dig
from both ends of K2.

3. Foldihg method : The key ‘K’ is portitioned into a no. of paris Ky, Ky
each part except the last has the same no. of digits as required address. Then, parts
added together ignoring the last carry to get the address

H(K) = Ky + Ko + + K,
e.g. Suppose there are 68 employees and 100 locations having 2-digit addresses
00 to 99. Apply three methods on following keys. '

Keys (K) : 3205 148 2345
(i) Division no :

Letm =97

H (3208) = 4, H (7148) = 67, H (2345) = 17
(i) Mid square method :
K2 1027025 57093904 5499025
72,93 and 90 are addresses of digits.

| T I



F\; 128
; (iii) Folding method :

- H (3205) = 32 + 05 = 37
- H (7148) = 71 + 48 = 19 (Ignore carry)
H(2345)=23+45=63. ’
Q 22. What are the various types of hash function. How ::ollie::n is h
,' while hashing. (PTU, ma

LO3D> Data Structure g, Algol‘i.th
: My

andlaq
Y 20
| OR _ 19
Explain the various collision resolution techniques used fO;Thasmng Wiy
example. (PTU, Dec 2

Ans. Hashing is a searching technique where we can compute the location of the de:i?h

/ record In order to retrieve in a single access. The basic idea of hash function g 1

transformation of the key into the corresponding location in the hash- table. A hash f““cliun;
can be defined as a function that takes key as input and transforms it into a hash tap|g indey,
Following are the most popular methods of hash functions :
1. Division Method : Table is an array of database file where the employee detaji &
stored. Chose a number m, which is larger than the number of keys K i.e. m is greater then
the total number of records the TABLE. The number m is usually chosen to be prime Numbg
of minimize the collision. The hash function H is defined by _ d
¢ H (K) = K (mod m) - _
Where H (K) is the hash address and here K (mod m) means the remainder when i

divided by m. oy
2. Mid Square Method : The key K is squared. Then the hash function H is defingg by
H(K) =K2=L
Where L is obtained by digits from both the ends of K2 starting from left. Same numpg,
of digits must be used for all of the keys.
e.g. _

[ kK | 4147 | 3750 2103
| k2 | 17199609 | 14062500 | 4422609

| HK) [ o7 62 22

3. Folding Method : The key K is partitioned into a number of parts K1, K2, K3 ..... Kr,
The parts have same number of digits as the required hash address, except possibly for the
‘last part. Then the parts are added together, ignoring the last carry. That is
H(K) =K1 +K2 +....... +Kr ,
Here we are dealing with a hash table with index from 00 to
50 we divide the K numbers of two digits.
e.g.

99, i.e. two-digit hash table.

[ K | 2203 7248 12345
[, Ki,Kkek3 | 2203 72,48 12,34,5
[ H (K) {  H (2208 H (7248) =12+ 3:1 +5
=K1+K2+K3 | =22+403=25 | =72+48=20 = 51

__and Hashind - = ; 129
so,ﬂng . Collision : It is possible that two non-identical key %
[

address. This gltuation i.=§ called hast? collision. Cd“;;; -:2 are l'\?shed into \h:)
¢ it can pe minimized conssc_lerably by u:nroducipg three techniques wmml are open
a0 bt:ng. chaining, bucket addressing. But in this question we will explain only one technique :
addrass = addressing : In open addressing method, when a key is coliding with ' :
o collision i resolved by finding a nearest empty space by probing the celis. anothe
ey sauppﬂse a record R with key K he_us a hash address H (K) = h, then we wil finearly
nn j (where i = 0, 1,2, .... m) locations for free space (i.e.h,h+1,h+2,h + 3 ... hash
ged
sddre:_i)é position in which a key can be stored is found by sequentity searching all positions
.+ from the position calculatec:’l by the hash function until an empty cell is found. This
m? robing is called linear probing.
: oaﬁadra““g Probing : Suppose a record with R with key K has the hash address H (K)
n, Then instead of searching the location with addressh,h+1,h+2 __ h+ i, we search for

sam® ha

sia

“;ee hash address h, i + 1,h+4,h+9 ... h+i2 .

Q 23. What is hash table? .

Ans. Hash table are common data structure. They consist of an array (the hash \able)
and @ mapping (the hash function). The hash function maps keys into hash values. tems
stored in @ hash table must _have keys. Thl::! hash. function maps the key of an ftem 1o a hash
value and that hash value is used as an index into the hash table for that tem. This allow
tems to be inserted and located quickly. It is the best search method introduced for binary
search. _

Q 24. Why we use hash table?

Ans. Having new looked at arrays, linked list, stack, queue and trees we will conclude
the concept of hash tables. The efficiency of storage, retrieval and sorting has been discussed

elsewhere and not dealt with in detail when discussing the earlier data structure. Now, it
become one of the main reason for using the hash tables.

Q 25. What is double hashing?
Ans. Double hashing is one of the best method available for open addressing because

‘the permutations produced have many of the characteristics of randomly chosen permutations

Double hashing uses a hash functions of the form :
h (K, i) = [h, (K) + ih, (K)] mod m
where m is the size of hash table, h, (K) [=K modm] and h, (K) [=Kmodm) are
auxiliary hash functions. Here m is chosen to be slightly less than m.
Q 26. What is rehashing? (PTU, May 20°
Ans. In rehashing we find an altemative empty location by meditying the hash funct
and applying the modified hash function to the coliiding symbol.
Q 27. What are the various us:
Ans. The uses of hashing are as
1. CD Database
2. Drivers Licences/Insurance Cards

of hashing?
low :



130

3. Sparse Arrays

4. File Signature

5. Game Boards

6. A.D.T Dictionary (Searchi i

7 Srke ry ( ching, Sorting)
8. Associative Arrays
9. Database Indexing
10. Caches
11. Sets

12. Object Representation
13. Unique Data Representation.

Q 28. Why hashing is needed?
Ans. While running collections of ca
A common way of load balancing n cache ma

number hash (O) mod n. But this will not work if a cache machine is added or remgy
because n changes and every object is hashed to a new location. This can be disastrgy,

since the originating content servers are flooded wi

th requests from the cache mMachineg
Hence, consistent hashing is needed to avoid swamping of servers.

Q 29. List out the different types of hashing functions ?
Ans. Different types of hash functions :
1. Division method
3. Multiplicative hash function
5. Digit analysis
Q 30. What is the advantage and average efficiency of quick sort ? Apply Quick
sort on the following data and show the contents of the array every pass :
48 7 26 44 13 23 98 57 100 5 32 (PTU, Dec. 2014)
Ans. Advantages :

1. Quicksort is an in-place sort that needs no temporary memory.

2. Typically, quicksort is faster in practice than other ©(n log n) algorithm, because its
inner loop can be efficiently implemented on most architectures.

3. Quick sort can be easily parallelized due to its divide-and-conquer nature.
4. In most real-world data, it is possible to make design choice which minimize the
probability of requiring quadratic time.

5. Quick sort tends to make excellent usage of the memory hierarchy like virtual memory
of caches. It is well suited to modern computer architectures.

Quick Sort efficiency : Best case situation : Assuming that the list-breaks into two
equal halves, we have two lists of size N/2 to sort. In order for each half to be partitioned,
(N/2) + (N/2) = N, comparisons are made. Also assuming that each of these lists breaks into
wo equal sized sublists, we can assume that there will be at the most log(N) splits. This wil
esult in a best time estimate of O(N*log(N)) for quick sort.

Worst case situation :In the worst case, the list does not divide equally and is largef

) one side than the other. In this case, the splitting may go on N-1 times. This gives a worst
se time estimate of O(N2).

(PTU, Dec. 29y,

(PTU, Dec. 2014}

2. Mid square
4. Digit folding

LO3D> Data Structure & Ng‘-‘rithrn
§

ching machines some limitatons are experiencad}-
chines is to put object O in cache machjy,

|
1

Y Hashmg “The agverage e o e
A ge UM¢ 57 100
ggfu p\f’ra 6 44 13 28 98
P
o

- TTTHEEC 10 be O

5 32 o3
o a2 57 100 5 98
511-5045 ; 36 1:'. :g 3:33 32 - 5 -:00 57 98
48 5 26 5 48 100 57 98
Bigannm * E
ra
; ow Sort tWO 5u?‘a:; y2.'.’- 32 100 57 o8
N 7 26 44 13 44 B2 57 100 98
2 7 26 Sg 06 44 32 57 98 100
_’5,,‘,’,2") —7a 92
= 7 @ 2 32 44
rray 1S 44 a6 & ©Bik6n
gosoneg %z 28 26 o |
5 Quick sort ? sort the following array using quick sort i
as1.What5:; a7 35 10 90 82 31 (PTU, May 2015)
O:iqk sort : Refer to Q.No. 4 .
S. . :
! ta 1s
we 9“’1".23 47 35 10 90 82 31
zae B 0 (s 47 85 W 2 o
pass1: (10 T, (c6 47 35 90 B2 3
pass2: [ 4 (47 35 31) 56 (90 82)
Passd: |5 24 (38 3D 4T 56 (90 82)
Passt. 10 24 (31) 3% 47 56 (90 82)
Pass®i |5 24 31 35 47 B8 (90 82)
:ZZ? o 24 81 35 47 56 (82) %0
pass8: 10 24 31 35 47 56 82 90

. @ 32. What is the advantage and average efficiency of Insertion sort ? Sort the

following data using an inse

after every pass .

rt

ion sort algorithm and show. the contents of the array

3 7 92 6 12 14 40 44 20 20 (PTU, Dec. 2015
' ion sort : Refer to Q.No. 7 i

Ans.;gseri_:;on 92 6 12 14 40 44 20 21
2 923 92 6 12 14 40 44 20 21
7 23 92 6 12 14 40 44 20 21
6 7 23 92 12 14 40 44 20 21
6 7 12 23 92 14 40 44 20 21
6 7 12 14 23 92 40 44 20 21
6 7 12 14 23 40 92 44 20 21
6 7 12 14 23 40 44 92 20 =
6§ 7 12 14 20 23 40 44 92 2
6 7 12 14 20 21 23 40 44 92



13
___E_____ LO3D> Data Structure 8 Algori

Q 33. What is Heap ? How are they represented in memory 7 Pe"‘m
' Q

for the following items :

44, 30, 50, 22, 60, 55, 77, 55, 10. (PTU, May ,
Ans. Heap : A heap is a complete binary tree which leads to the idea of storing j; u“‘B]
an array. Heap has the following properties : Sing
(a) The value of the root is the smallest or largest value in the tree.
(b) Every sub tree is a heap. . :
A heap is represented in memory by sequential representation i.e., using linear an ' pa
Build a heap H from the following list of numbers :
44, 30, 50, 22, 60, 55, 77, 55

' 32
1. 44 2. 44 3. /5q\ 4. 50\ 27
. s 2
30 30 44 30 44 27 3
; 22 27 32
ltem = 40 Item = 30 Iltem = 50 ltem = 22 07 32
32
5. . 60 6. 60 e J 77 8. 77 27
/\ / \ &N 7\ -
a A AR AR TG
% 3 / \ F o
22 30 22 30 44 22 30 44 55 50 30 44 55 o7 @
22 5
tem = 60 Item = 55 Item = 77 ~ ltem = 50 27
Q 34. Define the criteria for selecting a hash function. (PTU, May 2015) 27 32
Ans. The two principal criteria in selecting a hash function are that it should be eag, < 27 32
and quick to compute and that it should achieve an even distribution of the keys that actyg '

occur across the range of indices. If we know in advance exactly what keys will occur, _lhen?ir pass - 3
is possible to construct has functions that will be very efficient, but generally we do not knoy

in advance what keys will occur. Therefore, the usual way is for the hash function to take the
key, chop it up, mix the pieces together in various ways, and thereby obtain an index that (liks

the pseudorandom numbers generated by computer) will be uniformly distributed over the
ange of indices. :

Q 35. Consider the following numbers are stored in an array A : Pass - 4
32, 51, 27, 85, 66, 23, 13, 57 TR
_ Apply Bubble sort algorithm to the array A and show each pass separately.

(PTU, May 2016)
Ans. (32 (51). 27 85 66 23 13 57
322 () (7)) 85 66 23 13 57 i
32 27 (51 . 66 23 13 57
Pass - 6
32 27 51 66 23 13 57

So sorted array is

27

66
66

66
66

66

®®

23

23
23

23

&
23

23
23
23
23
23

@. 13.
@3
@)

13
13

51

13
13
13

57

57
57

- 87

57
57

13,23,27,32,51.57,66.85

57
57
57
57
57

66



Ans. Pass 1

@ @ 28 g4

. 31 @ 84
31 28 )

31 28 52 )

31 28 52 g5

31 28 52 g5°

31 28 52 65

31 28 52 65
Pass2: (31 52
28 @) @

28 31 (5

28 31 52

28 31 52

28 31 52

28 31 52

Pass 3 : @ 52
3 @ @

28 31 (82

28 31 24

28 31 24

Pass 4 : @) 24
28 (39 -

28 24 (3))

28 24 14

Pass 5 ; 14
24

24 14 28

Pass 6 : 28
14 24 28

24

24
24

65
65

@@

24
24

24
24

:®®

14
14

31
31
31
31

31
31

(Compare 31 and 52

» NO Swap)
(Compare 52 and 28, Swap)

(Compare 52 and 84, no Swa
P)

‘ (Compare 84 and 65, Swap)

(Compare 84 and 24, Swap)
(Compare 84 and 14, s;wap)
(Compare 84 and 56, Swap)

84
84
84
84
84

84
84

84
84
84
84
84
84
84
84
84
84 .
84
84

84
84

135

1 are sorted. )
~ Al list @ orithm to implement Quick sort. Write the ste
ntsnb;‘?luick sort method : PS 10 sort the

46 (PTU,
wind g, 6 81:5oﬂ algorith Wy 1y

m : Refer to Q.No. 5

s 28 @ 87 48

1+, :
pass e 17 ( 87 46)‘ _
pass 2 _ 6 17 28 (87 46)

pass3 ' ¢ 17 28 46 87
pa;: \4miie ADT operatigng ;or1 t_;egg sort. Using the above algorithm sort the following;
a3 "os, 45, 26,11, 6,35, 17, (PTU, May 2015

is a comparison-based sorting algorithm to ¢r :
A“sg';;ﬁp?g*; selection sort fal:nﬂy. Although somewhat slo:rfra i: :faﬁ?.:ea:,': m
- og than @ weu-im;?lemented Guickeoil, R has the advantage of a more favourable
achin®® o (log n) run time. Heapsort is an inplace algorithm, but is not a stable sort.
wazst.calsea two-step algorithm : The first step is to build a heap out of the data,
"ttfh: second step begins with removing the largest element from the heap. We insert
moved element into the sorted array. For the first element, this would be position 0 of
fhe re réy Next we reconstruct the heap and remove the next largest item, and insert it into
fne ::ra y: After we have removed all thie objects from the heap, we have a sorted array. We
21; vary the direction of the sorted elements by choosing a min-heap or max-heap in step one.
35, 45, 25, 11, 6, 85, 17, 35 be a list of elements we can construct a tree for these

Y glements as follows :

Tl n] sl

S ONORONG :

a[5) a[B)




4 v — . I
; Hashlng
Loqa) Data Structure 8, Algcﬂth nd a -
136 e v ‘ ‘ ‘ ‘ i
. 6|17
: Priority queue

with the last node in the treg

= . t node
Thus the heapified tree is constructed. Now swap roo rity queue.

each time and then delete the last noqe and insert it in the prio

(25) ;
— Swap
- ® e
O S
Priority queue , @ @ - \6 \ - }D:i:riLzzu\eue \
®®

@ PN P
o — 4%~ &
) ()

F\11\17\25\35\ |

Priority queue
4 } | @‘ o
® ® ~ ©® ©

@ EEEEEC

| Priority queue
(1) (3




.

ind
LO3D> Data Structure & Al - 4Hast
138 A=t iy o ::.ch 5%2:2:3;.%?“59 procedure merges the pairs of sub amrays of A ang assign iy
(45) ' | o pan LT 2**QandR:=N o
: 6 |11|17|25|35| 35|45 we' Uy BT (N/2°L) 5 S = A
— I MEIEIEE P11 S0 oue pocecte ¥ TG 1 5 e o ey
7 se € | g swsmensees Sy
2. Bopeatford = 1 ooy v | [Finds Lo
P i 2+ J-2)*L{ wer bound of fi
9 3 (@ %ituﬁé\::é’-s (A LLB,ATLLB+L BB o
(b) End of Loop]
@ Only oné subarray-left?]
. . L i © ¢ R < L then
Delete it and insert in priority queue R _ 2 R:
- ﬁepeat for J —! 1 y &g mresens .
Finally we get priority queue as SetB (S+L):= A(S+4J)
[e [r[]=[=[=]]®] . End of LooP
If we delete the elements of queue one by one we will get the sorted list as Else :
6";‘1' 17, 25, 35, 35, 45, 85 | Call MERGE (AL, S+ 1, AR, L+S+1,B,S+1)
Q 39. Write an algorithm to implement Merge sort. (PTU, May 2018} _ [E_nd of If structure] )
Ans. Algorithm : eturn : z
1. MERGING (A, R, B, S, C) : Let A and B be sorted arrays with R and S elemgyy, 4 Mieﬂlég SORT (A,N) : This algorithm sorts the N element array A using an auxiiary
respectively. This algorithm merges A and B into an array C with N =R + S elements, ‘:3 4.
1. [Initialize] Set NA:=1,NB:=1and PTR: =1 -aray 1' setL:=1 [Initializes the number of elements in the subarrays)
2. [Compare] Repeat while NA < Rand NB<S:If A[NA]<B [NB] then : 2‘ Repeat steps 3to 6 while L < N :
(a) [Assign element from A to C] set C [PTR] : = A [NA] 3. Call MERGE PASS (AN, L, B)
(b) [Update pointers] set PTR : PTR + 1 and NA : = NA + 1 else 4. Call MERGE PASS (B,N,2* L, A)
(a) [Assign element from B to C] Set C[PTR] : = B [NB] : 5. SetL:=4 L
[(b) c];U;:;c:ate ;‘)ointers] set PTR: = PTR + 1 and NB : = NB + 1 [End of if structure) [End of step 2 Loop]
_ end of loop = 6. EXIT.
3. [Assign remaining elements to C] Q 40. Build a heap H from the following list of numbers :
IFNA>Rthen - . 40, 65, 15, 48, 14, 50, 17,22 . (PTU, May 2
RepeatforK=0,1,2,....S-NB: Ans. Creating heap
Set ((PTR+K]:=B[NB + k] : 85
[End of loop] 40 65 85 R )
Else; 4 N \
; 1 40 40 40 48 0 &
Repeat forK=0, 1, 2...... R = NA: / / /
Set ([PTR +kJ; = A {NA + k] ) . 15 15 }5
. [End of Loop] o ITEM=40  ITEM=65  ITEM=15 ITEM=48 4 ITEM=
[End of if structure] : ' i ' v)
4. Exit _ @) . (ii) (iih) (v)
2. MERGE (A, R, LBA, S, LBB, C, LBC) : This procedure merges the sorted array A 83 R R
d B into array C. : ; _ £ £\ n \50
1. SetNA:=LBA,NB:=LBB, PRT:=LBC, UBA : = LBA + R' - 1 4.9 4G % A\
UBB:=LBB+S~-1 . N 44 11r/ 3%
2. Same as above a!gor_ithm except R is replaced by UBA and S by UBB. / /\ 1{ \15
:. ga;ne as above algorithm except R is replaced by UBA and S by UBB. " " 22
. Return. ITEM=50 ITEM=17 ‘TE&.:}
(vi) (vil)
Qo
I ——— T

3. MERGE PASS (A, N, L, B) : The N element array A is composed of sorted sub arrays

L elements except possibly the last sub ary 139
Y have



Chapter

. B
\ L

Basic Terminology and Representations, Graphs search and traversal algorithms ang
complexity analysis.

Graph,

POINTS TO REMEMBE%

BF A graph is a non-linear data structure that consists of a collection of vertices (or nodes)

and a collection of edges, with each edge joining one vertex to another. It is representgq
as G = (V, E) where V is a set of vertices and E is a set of edges.

" A directed graph or digraph is a graph whose each edge is an ordered pair of verticeg

Edges of a digraph have a direction associated with them which indicate how it may pe '

traversed.

IF A undirected graph is a graph in which there is a no direction associated with any of the

edges. Presence of an edge connecting two nodes indicates that we can traverse in
either direction.

IF" Two vertices in a graph are said to be adjacent it there exists an edge between them.
IF" A path is sequence of vertices traversed by following the edges between them. A path is

simple it is has no repeating vertices with an exception that V, (starting vertex in path)
may equal N, (last vertex). '

IF A cycle is a simple path consisting of sequence of vertices such that the starting and
ending vertex are the same.

IF A loop is a special case of cycle in which an edge begins and ends with the same vertex.

)

ies of the adjacency matrix provides information re Ll
he en

garding
& aph are adjacent or not. 9 Whether twg Vertices
It . ; ) :
of 2 weighted graph, if an edge with a given weight exist betwe

@ I at weight @s the entry in the weighted adjacency matrix in

gtore th
ma‘lrix-

en two vertj

; ces th
stead of { ag g

n adjacency
; ix of an undirected graph, the sum of .
d acency matl'ix o 1 of all the entrie:
In ai'r‘; i r]\ wwice the number of edges in.the graph. S ofthe adjacency
rnatan adjacency matrix of a directedlgraph. the outdegree of a vertex is equal t
lnf s entries of the row corresponding to it and indegree of vertex is equal t 0 the sum
One ontries of the column corresponding to it. 0 the sum of
i‘:Th e path matrix determines whether there exists a path between any two vertice
S or

not. ; ) . ) ; "
Insertion, deletion and traversing are the basic operations that can be performed on a
graph- . i
The shortest path between .any two vertices of a weighted graph is the sequence of
connected vertices so that the sum of the cost of edges that interconnect them is minimum
Dijkstra’s shortest path algorithm determines the shortest path from a single source
vertex to all other vertices of a graph.

Floyd's shortest path algorithm determines the path with the minimum cost from every
vertex to every other vertex.

L

R & ® & ®

‘iF A spanning ree in G is an acyclic subgroup of G that includes every vertex of G and is

connected.

2]

A minimum spanning tree is a spanning tree whose sum of weights of all its edges i
minimum.

in a strongly connected graph, if there is a path from veriex U to vertex V then ther
should be another path from vertex V to vertex U.

A connected graph is biconnected if there are no vertices whose removal disconnec
the rest of the graph.

iF |n an undirected graph, the degree of a vertex is the number of edges originating from it. ad
IF |ndegree of a vertex in a directed graph is the number of edges entering the vertex.
Outdegree of a vertex in a directed graph is the number of edges leaving the vertex.
IF A graph is said to be complete if there are edges from any vertex to all other vertices.
¥ An.undirected graph is said to be connected if every vertex is reachable from others by
following some path.
¥ A graph is termed as weighted graph if all the edges in it are labeled with some weights.

A weighted edge between two vertices V; and V, that has a scalar value w associated
with it is written as (V;, V;, W).

A biconnected component of a graph is a maximum set of vertices that is biconnecie

QUESTION-ANSWERS |

Q 1. What is Kruskal's algorithm used for in graphs? anning ree of the &1
Ans. The Kruskal's algorithm is used for finding the m‘“"f‘”mt <6 in increasing 01%®

‘graph. In kruskal's algorithm, edges are added to tpe spanning Ir

cost. If the edge form a cycle in the spanning, itis diacardec.

Q 2. Explain representation of graph.
Ans. A graph ‘G’ consists of two things :
1. Aset V' of elements called nodes.

" A multi graph is a graph in which these are two or more edges connecting the same
vertices of graphs.

140




LO3D> Data Structure g Algg
: h

14 : : . o
.. = identified With unique palm

2. A set ‘E’ of edges s.t. each edge in ‘E" 1S o W0 types ° )
denoted by e = (u, v). Its representallon I thesi adjacency matrix. it s .
1. Sequential representation : It i represente ’

if v: is adjacent to Vj
matrix defined as a;; = {;' o lome{r\wse I

]

al

gt e i o lists
2. Linked representation : It consists of W S he structure of node list g .

(a) A node list which links all the nodes of grap

s ——

of a node. Structure of edge -
e

(b) An edge list which links all the adjacent nodes

e
| —————
I

I DEST l LINK

Q 3. Explain Depth-First Search. (PTU, Dec, 3

Ans. In Depth First Search i.e., DFS, firstly we examine starting node ‘A", Thep "
examine ‘each node ‘N’ along a path P, which begins at ‘A’, i.e. we process a neighbouyr of ‘W
and so on. After coming to a “dead end”, we back track on P until we can continue alon
another path P'. In this case, we use stack instead of queues. : \

Q 4. Distinguish between BFS and DFS. (PTU, Dec. 200

J-\ns. Breadth First-Search (BFS) : The general idea behind a breadth first search,

begin-mn_g at a starting node A is as follows. First, we examine the starting node A." Then yy

examine all the neighbours of A, And so on. Naturally, we need to keep track of neighbours of

a node fmd we need to guarantees that no node is processed more than once. This is

acc'ompllshet_:l by using a queue to hold nodes that are waiting to be processed, and b

vriting a field STATUS which tells us the current status of any node. ’ F

De:!pth First Search (DFS) : The general idea a depth first search begining at a storin

zie Ais :]S ;oﬂovlvs : Firft we examine the starting node A. Then we examine each nodeﬂ

rn:}jgg :b’;i et :2;::3 sb;%r::s :ftt Q c ,;r:itnas,t;ve pcrjoczed a neighbour of A, then a neighbour of

: a“ i

ck :rack on P until we can continue alc?ng anots:r :;fliha:n’fi ts?: or ot e pate

e tn the nut shell results, DFS (depth first search) is similar to BFS (breadth first search)
Pt now we use a stack instead of queue for DFS (depth first.search)

Q 5. Discuss how graphs are represented in memory using linked list
: ist. .
(PTU, May 2007)

Ans. The linked representation of gra

A Ph contains two Jists :

A node list which links all the nodes of the graph. The structure of node list is :
' node listls: -

4 — 143

) .ch links all the adjacent nodes of a node. st
o list whic - Slructure of edge st ig -

AN edd
: —_—

:
@ LINK |

omplete graph? Write any two applications of compjete graph

i (PTui Dec. .
raph is said 10 be complete if there are edges from any vertex 1o aua:luh:)
h type of graph, each vertex is adjacent to every other vertex. For exampler-
G2 are complete graph. T :

6. What are €
Ans. A g'
In SUc

ices-
‘1?19 graph G s

Complete Graph
Q 7. What is 'adiacency matrix representation of a graph in memory?
-(PTU, Dec. 200

graph with m nodeé and suppose the nodes of

Ans. Suppose G is a simble directed
G- Then adjacéncy matrix A = (d;) of graph G

have been ordered adn called Gy, (C PR
the m x m matrix defined as follows :

{1 if G is adjacent to Gj,that s, there is an edge (G;.Gi)
i =

0 otherwise

. : i ix or a boole
such a matrix A, which contains entries of 0and 11is called bit matrix or

matrix.
for example,
Consider a graph G, suppose the nodes are sto
follows :

DATA:X,Y,Z,W

Then we assume that G = X, Go =Y, Ga =2, Gy =
The adjacency matrix A to G is as follows :

red is memory ina linear array DAT/

w



144 LO3D> Data Structure & Algorithmg

0

1
A=1
0

1
1
1
0

o O oo
- O = O

Note that 1's in A is equal to number of edge G
Y > X

z < w

Q8. Define connected and weakly connected graph. (PTU, May 2009)

Ans. In mathematics and computer science, connectivity is one of the basic concepts

of graph theory. It is closely related to the theory of network flow problems. The connectivity
of a Qra_ph is an important measure of its robustness as a network.

In an undirected graph G, two vertices uand v are called connected if G contains a path

‘from u to v. Otherwise, they are called disconnected. (Recall that vertices connected by an

edge,i.e., by path of length 1, are called adjcent.) A graph is called connected if every pair of
distinct vertices in the graph can be connected through some path.

A connected component is a maximal connected subgraph of G. Each vertex belongs

to exactly one connected component, as does each edge.

A directed’ graph is called weakly connected if replacing all of its directed edges with
undirected edges produces a connected (undirected) graph. Itis strongly connected or strong
if it contains a directed path from u and v and a directed path from v to u for every pair of
veriices u, v. The strong components are the maximal strongly connected subgraphs.

Q 9. Explain topological sorting on graphs. - ' (PTU; May 2009)

Ans. In graph theory, a topological sort or topological ordering of a directed acyclic

graph (DAG) is a linear ordering of its nodes in which each node comes before all nodes to

which it has outbound edges. Every DAG has one or more topological sorts.

More formally,define the partial order relation R over the nodes of the DAG such that

xRy if and only if there is a directed path from x to y. Then, a topological sort is a linear
‘extension of this partial order, that is, a total order compatible wit the partial order.

Q 10. What is directed graph? (PTU, Dec. 2009)

Ans. A directed graph G is defined as an ordered path where, V is a set of vertices and

e ordered pairs in E are called edges on V. A directed graph can be represented geometrically

s a set of marked points (called vertices) V with a set of arrows (called edges) E between

.irs of points (or vertices) so that there is at most one arrow from one vertex to another

ey For example following figure shows a directed graph, where

irs
re. P
| g epreseﬂ‘ed

Q12 What are vario

ina graph-
Ans.

1.

3.
4.

~ Traversal in a graph : A graph can be traversed in
Search (BFS) or Depth First Search.

1.

7

epresented in memory?

nted in memory by a linked representation, also c(a‘:\:: ;:1 :: 2010) -

o store all the vertices of the graph in.a list and then each ﬂd]aceml:::-\ncz;
using linked list node. leie -termmal vertex of an edge is stored in a
nked 1o @ corresponding initial vertex in the list. For example, following
4 can be represented using linked list as in fig. 2.

g
5 represe

" and li
of fig.

Fig. 2

Fig. 1

us applications of graphs? Write an algorithm for traversal
(PTU, May 2004)

Various applications of graphs include : .

These are used to distinguish between chemical compounds having same molecular

but difference structure formula. ‘

Graphs are used 1o study the network of Internet, i.e. Worldwide web. Hence, these

are used to establish connection between diﬁeren'lt systetrin.

Graphs are used 10 implement a circuit on a circuit boar . e

Graphs are also used 10 implement transportation services and commun

networks. adin First

o ways : either Bre

eginning at a starting node A.

” U
its status 10 waiting steté (STAT

BFS : This algorithm executes a BFS on @ graph G P
Initialize all nodes to ready state (STATUS = 1).
Put the starting node ‘A’ in QUEUE and change
= 2)‘ .
Repeat steps 4 and 5 until queue is empty.
Remove the front node N of QUEUE Process
processed state (STATUS = 3).



T e o _ , LO3D> Data Structure & Algorigy, - | o ndiol“i"g List
(STATUS = 1), & change their ::—‘l?hbours of- N that are in steady state, s F= //B,'C-,K’_—
6. P atus to waiting state (STATUS = 2). ’; . D '
2. Depth First Search : Thi i : i
St A : This algorithm executes a DFS on a graph G beginning C : i‘i’ :
;- gutr:ﬁze all nodes to ready state (STATUS = 1) at 2 s K, D, G H
. Push starti A’ : :
21 Ing node ‘A’ onto STACK and change its status to waiting state (STATY i - ::
i S - D
3. ) = G - 1
8 Pﬂgg";':; ?;ps ‘::l and 5 until STACK is emply. | . iEF
- node N of STACK. Proce i £
(STATUS = 3). ss N and change its status to processeq o | K : B

5. ; ;
Push onto STACK all neighbours of N that are still in read ‘ ; Initial push G into stack as follows :

change their status to waiting state (STATUS = Y state (STATUS = 1) ang a '
6. Exit. 9 (TATUS =£). ' ' = (e) STACK ; G
; . ' i lement G and then push onto th :
. Q 13. How minimal spanning tr : ; pop and print pps @ stack all the neighbours of K
algorithm. P g tree for a graph is generated? Explain with - .{b) as follows: |

. o E (PTUg Dec.
Ans. To obtain the minimum spanning tree for a graph, J.B Kruskal deveqopgg'l;)
' : n

Print G : STACK D, H
Igorithm in 1956 known as KrusKal’s algorithm. This algorithm builds a minimum spanning |

pop and print top element H and then push onto the stack all the neighbours of H

i : _ c)

ee by adding on_e edge at a time to a subgraph. Each time an edge with the lowest cost js | ( as follows:

hosen such t'hat it does not create a cycle with the edges already chosen if it does, we reject | ' Print H: STACKD, E, F

at edge. This process of adding edges continues until (n — 1) edges are added to the n pop and print the top element F and then push onto stack all neighbours of F as
rtices spanning tree. If (n — 1) edges don't from a cycle then the resulting spanning tree is () Few

e minimum spanning tree. RRkerE E K
Kruskel's Algorithm is as follow : | Print F : STAGK D, % ush onto stack all neighbours of K as
Step 1. Sort the edges of the graph is ascending order in accordance to their weight. } - (e) Pop and print the top element K and then P :
|

Step 2. Select the edge of least weight and-add it to the tree which is initially empty. follows -
Step 3. Select the edges not previously selected, the edge of the least weight that does Print K : STACK D, E, B : ofBas
form a cycle together with the Iedges already included. Add this edge into the tree. | () Popand print the top element B and then push onto stack all the neighbours
Step 4. Repeat step 3 until the tree contains n — 1 edges or all the edges are exhausted.

o , s
If the tree so generated contains (n — 1) edges than this tree is the minimum spanning | followpﬂnt B : STACK D, E fEa
otherwise no spanning tree is possible for the graph. 't the top element E and push onto stack all the neighbouts
: ' and print the top €
Q 14. Apply Depth First Search (DFS) to following algo. (PTU, Dec. 2007) (@ :;cl)lgws ; : oo
Print E : STACK D + into stack
(h) Pop and print top element K and pus _ it ook
Print P : STACK sarch of G starting at
The stack is now empty, SO the deﬂ;::: ‘
Accordingly now nodes will be printed as 10
GI H| F; K‘ B' E' D fab‘e 10"" G'

reacha

are precisely the nodes which aré



h 4

LO3D> Data Structure & Algorith,
ms

An €99% T
_________...---___________...-—-—-—'—'-'"""'-
ﬁﬂf—-—*—"
cation in the list NODE ot destination or terminal node
i pot o V> s with the same initial node, 1.e., the nodes in
be other information.

148
Q 15. Write the a
lications of d
Ans. Depth-F PP of depth first traversal of a graph. (PTU, M
of the tree. Sinﬁe . :;:t I'_lrl:versal : A depth-first traversal of a tree always starts a?:'h:'lue
vertex at which 1o b ll:' as no root,when we do a depth-first traversal, we must speci foot { o
visits egin. A depth-first traversal of a tree visits a od iy the tne edge
the subtrees of that i nods and then, tecurs ogethe' i there ma
then recursively visits al? tr?:::dta.rlSImllaznrly. depth-first traversal of a graph visits a ve nex“faely ded ared indicates that the y
e i i 4
contain cycles, but the trav vertices adjs_;c‘ent to that node. The catch is that the graph mnd for sho est paths. (PTU, May 2005)
probi ersal must visit every vertex at most once.The soluti 54 's algo"“hm { :
suff em is to keep track of the nodes that have been visited, so that the travers :on Xikn : ain i with ' nodes V4, vz e Y Supposs, We Werl b i ¥
uffer the fate of infinite recursion. ' al does noy e al? Ex?l; pe @ girected pe define ‘™ square matrices (mxm) Pg 1o Py 28 follows = -
0 s 184S gravh Frsh, ¢ :
° matri* of 9 sl
' e P2 s simple path {ror vito "'1“{““:“ ReriRaee
i there t passing V4 O VK
. ' t 1 " pyotner nodes except P
(2] L. e otherwise -
0
" Bt  there is a0 edge from v 10V} which doesn’t use any other node
9.8 . , :
. O -  moans Po )
For examplo,fig. illustrates the depth-first traversal of the directed g ; sibly V4 ing 2 cases oceur -
: : A graph Gy s'ating except pos occur if one of following
{rem vertex c. Thecd:y::t;-ﬁrst {raversal visits the nodes in the order Py = 1 ‘fa"p"e oath — which doesn't use any other node gxcepi only
. ) N-meneH fe i s a S‘m 4
Applications : Algorithms where DFS is used : 1. e vgts € Py L0V = = ' ' nere each path
O Finding connected components. ¢ VT simple ath from 6,10V and a simple path from vyto vy, Whe :
O Topological sorting. . 2. There }s . nodes except possibly Vi «--- V-1
O Finding 2- (edge or vertex)-connected components. doesn't use oy
O Finding strongly connected components 33 Py [i, Kl and Pra K 1D
- p,ii=1or Pl
O Solving puzzles with only one solution such as mazes. (DFS can be adapted to find \ b
i : . : . { can be obtained bY
all solutions to a maze by only including nodes on the current path in the visitede Accordingly, the elements of matnx_PK
Set.) PK U, n - PK—‘l “‘ ﬂ. \Y] (PK-"‘ h‘ K'l .a‘\ PK—1 ‘_K| “D
Q 16. Explain linked representation of graphs. (PTU, Dec. 2004) 6 ; dV (Oﬂ)-
i : . . i erations of » (AND) an
Ans. The linked representation of graph contains two lists : Where we use \ogicgi op (©TU, De. 20
1. Node list : A node list links all the nodes of graph. The structure of node list is : Q 18. Write Warshall’s algorithm for shortest path:
' Ans. Warshell's algorithm 5 . : mal
S e X rite ory by its adjacency
_ NODE NEXT ADJ A directed graph ‘G’ with ‘M nodes is maintained in mem ry by F—
Thus algorithm finds the patn matrix ‘P’ of graph ‘G-
Here, NODE will be the name or key value of node, NEXT will be a pointer to the next 1. Repeatforl,Jd = 1,2y wein M
je in the list NODE and ADJ will be a pointer to Istlelement in adjacency list of no_de, fA[,J]1=0,then:
EDGE. The shaded area indicates that there may pe other setP[l,J1=03
node, the STATUS of node,. ELSE :
SetP [}, J=1

ch is maintained in list
h as in degree and out degree of

rmation in the record, suc

| s0 on.



ALS

150 LOD Data Strycy,, ;
2. Repeat steps 3 and 4 for K = g, 2, e M &n‘lgﬁ" | a: =
f- Repeat step 4 for | = 1, 2, -+ U\.rl 0:0,A,AAF lB 154
. RepeatforJ=1,2, ... M A - . g
P s oI PV (P 0K AP () o L FRD AR REn
. Exit. . n:w’baok trace from J, using any oﬁgm_ To ﬂ;‘ T P
:nw- Apply Breadth First Search (BFS) on following graphs.  (py,, “’ff’_ G<«B ;’ A ‘ %
= » Mg i ired path 7 ¢ (o2
y o reau i
” aqu is i o graphs are represented in memory? Write . 'g“' b
' ?rom the graPh : " © Procedure 1o delete 5 x
n0de qs. There are two standlard ways .oi maintaining a graph G in (PTU, Way 2009) :
F B Sequ ential representation of G, is by means of its adjace mory of a computer
! Jhe other way is called the linked representation of G T . <
v 2 : 118 Dy means of Vinked | 'g
D G . hbours, . ist Ut
neld p d]acenc\' Matrix -
' - ' directed graph with m nod
guppose G 1® a simple es, and suppo
J K ; ol d‘;red and are called vq, V2, = v Then adjacency matrix k:{; "i;\eimdes of G have
Ans. Adjacancy | Degl:n x n matrix defined as follows : il ot the graph in G i
y cy list : the
;‘_-' g g, B 1 if v, is adjacent to v;, that s, thers
e ay = _
g (’3: X 0 isanedge (v, v} otherwise
E:D,C,J such a matrix A, which contains entries of any 0 and 1 is called a bit malrix or boolean
Fab matrix. : '
G:CE PATH Matrix : :
J:D, K Let G be a simple directed graph with m nodes vy, Vg, « Vo The path malrix of
K:E G eachability matrix of G is the m-square matrix P = (p;) defined as follows :

1. F=1 : : - 1 If thereis a pathfrom v; 1o v

Rt QUEUE : A i=\0 otherwise
; 0:¢ .

2. F=2  Q:AB.CB A procedure to delete a node from the graph as follows *

 R=4 o s 'A 'A 'A ’ ; DELETE (INFO, LINK, START, AVAIL, ITEM, FLAG)

3. F=8. - Q: A' F C,: B ' : This algorithm delete the first node in the list containing TEM or sets FLAG =F
R=5 0 N 0 'A ’A B,D when ITEM does not appear in the list. e -
F=4 Q : p: F i Step 1: [List Empty]: !t START = NULL then set FLAG = FALSE and fet
R=5 0:0FA e Step2: [ITEM in the first node] If INFO [START] = ITEMhen
F=5 iy AAF - Set PTR = START, START = LINK [STARTI
R=6 by F,C,B,D,G LINK [PTR] = AVAIL, AVAIL = PTR
F=6 | o 0,AA AF,B FLAG = TRUE and retum
R=6 ‘A F,C,B,D,G . [end of if structure]

0:0,A/AAF,B



h 28

i.o=la5 Data Structure g Algor

ki /’N
E = START [initializes Pointers) -

Step 3: Set PTR = LINK [START] and SAV

Step 4 : Repeat steps 5 and 6 while PTR = NULL

Step 5: It INFO [PTR] = ITEM then
Set lei [SAVE] = LINK [PTR], LINK [PTR] = AVAIL
AVAIL = PTR, FLAG = TRUE and retum
[END of if structure]

Step 6 : Set SAVE = PTR and PTR = LINK [P
[step of step 4 loop]

Step 7 : Set FLAG = FALSE and return.

Q 21. Explain the Warshall’s algorithm for finding the path in graph.
(pTU| Dec. 2ma

Ans. Let G be a directed graph with m nodes Gi, Gz, Gy suppose we want to fing y,

yath matrix P of graph G. ffici
Warshall gave algorithm for this purpose that is much more efficient than calcyigyy,

owers of adjacency matrix. -
According the elements of matrix Py can be obtained by
Pyl jl = Py 1A [Py [ K1 APy (R
Warshall Algorithm : A directed graph G with M nodes is maintained memory by jis
djacency matrix A. This algorithm finds the boolean path matrix P of graph G.
Step 1. Repeatforl,d=1,2, ...... M [Initializing P]
IfA[l,J]=0thensetP[l,J]=0
ElsesetP[l, J]=1
[End of loop]
Step_ 2. Repeat step3and4forK=1,2, ..... M [Updates P]
Step 3. Repeatstep4fori=1,2, ... M
Step 4. RepeatforJ=1,2,....M ;
Setp[l,J]=P[,J]V (P, KIAP[K,J])
[End of loop] )
[End of step 3 loop]
[End of step 2 loop]
Step 5. Exit.

Q 22. Discuss the Dijkstra’s algorithm for finding the shortest paths from a source
all other vertices in a directed graph. What is its time complexity? (PTU, Maly 2009)
. Ans. Algorithm : In graph theory, the shortest path problem is the problem of hndiﬂgez
h between two vertices (or node) such that the sum of the weights of its constituent edg z
ninimized. An example is finding the quickest way to get from one location to anothef on
d map; in this case, the vertices represent locations and the edges represent segments
i and are weighted by the time needed to travel that segment. . 1060
Dijkstra’s algorithm, conceived by Dutch computer scientist Edsger Dijkstra in

TR] [updates pointers]

. ysed-in

Graph - -
graph search algorithm that solves the single-source shortest

is @ onnegative edge path costs, producing a shortest Réih tre:a;hh i;:otl)!em fora
Hat rduting. Anipquivalont aigoriin wes developad by Edwarci F Moi?"f““'“ Is often

‘Let's call the node we are starhng wi.t.h an initial node. Let a dis:tanue ?:fm Al

ance from the initial node to it. Dijkstra’s algorithm will ion T ?'nm ¥ be
the O and will try to improve them step-by-step. initial distance
varues1 Assign to every node a distance value. Set it to zero for our

' infinity for all other nodes.
Mark all nodes as unvisited. Set initial node as current,
For current node,consider all its unvisited neighbours and calculate their distanc
(from the initial node). For example, if current node (A) has distance i a:
edge connecting it with another node (B) is 2, the distance 1o B though A will po
6 + 2 = 8. If this distance is less than the previously recorded distance o
beginning, zero for the initial node), overwrite the distance.

4. When we are done considering all neighbours of the current o,
visited. A visited node will not be checked ever again: its atorate #0084 i e
final and minimal. :

5. Set the unvisited node with the smallest distance (from the initial node) as the next
“current node” and continue from step 3.

Complexity of Dijkstra’s Algorithm : With adjacency matrix representation, the running
time is O (n2). By using an adjacency list representation and a partially order tree data structure
for organizing the set V — S, the complexity can be shown to be

O (¢ log n)
where e is the number of edges and n is the number of vertices in the graph.

initial node and 10

2.
3.

Q 23. How graph is represented in memory? (PTU, May 2011)

Ans. It is possible to represent graphs in compuler memory with a variety of cifferent
data structures. One strategy is to use an dimensional array in which the row and column
headers represent different vertices in the graph. A one way edge between for example,
vertex one and there is denoted by a positive value in array position (1. 3). Another method
for representing graphs is as a more complicated linked list structure. Each vertex in the
graph is a node in a master linked list. Another linked list emantes from each vertex node and

denotes the vertices directly adjacent to a given source vertex. This method called an adjacency
list.

Q 24. Explain the following :

(a) Depth first search.

(b) Breadth first search. (PTU; May 2011, 2030

L :l:s (a) Depth-First Search : The general idea depth-first search beginning a ey

e S as foliovlvs. First we examine the starting node A. Then we examine eac_h noce

% ne? a path P which begins at A : that is, we process a neighbour of A, then a neightiour
ghbour of A and so on. After coming to a “dead end", that is to the end of the path P\



. ol

154
blac'ktrack on P until we can continue along another, path P'. And so on (This algori
similar to the in order rr_awersal of a binary tree, and the algorithm is also similar tog;%mhm )
one might travel througp amaze). The algorithm is very STATUS is used to tell us th °
status of a node. The algorithm follows : o

Algorithm : This algorithm executes a depth first search on a gra inni
starting node A. N & graph of beginning gt ,
1. Initialize all nodes to the ready state (STATUS = 1).
2. Push the starting node A onto STACK and change its st iti
TS ) g status to the waiting state
3. Repeat steps 4 and 5 until STACK is empty.
4. Pop the top node N of STACK. Process N and change i
. t
state (STATUS = 3). i
5. Push onto STACK all the neighbours of N that are still in the ready state (STATUS
1) and change their status to the waiting state (STATUS = 2). )
[End of the step 3 loop]

6. Exit.
(b) Breadth First Search : The general idea behind a breadth-first search beginning at

LO3ID> Data Structure & Algority,
Mg

array
uri rent

a starting node A is as follows. First we examine the starting node A. Then we examine all the
neighbours of A. Then we examine all the neighbours of the neighbors of A and so on
Naturally, we need to keep track of the neigbours of a node, and we need to guarantee thai
10 node is processed, and by using a field STATUS which tells us the current status as any

ode. The algorithm follows.

Algorithm A : This algorithm executes a breadth first search on a graph a beginning at

starting node A.

1. Initialize all nodes to the ready state (STATUS = 1).

2. Put the starting node A in queue and change its status to the waiting state (STATUS
=2). .
Repeat steps 4 and 5 until queue is empty :

3.
4. Remove the front node N of queue. Process N and change the status of N to the

5.

6.

Q

processed a state (STATUS = 3).
Add to the rear of QUEUE all the neighbors o

[End of step 3 loop]
Exit.

25, Define data structures grap

f N that are in the state (STATUS = 2)

h. How they are represented in memory?
(PTU, May 2019 ; Dec. 2007)

OR
brief the various

What is graph?' How they are different from trees? Describe in
(PTU, Dec. 2012)

»ds used to represent graphs in memory.
Ans. A graph is an abstract data structure t
graph concepts from mathematics.
\ graph data structure consists of a
edges or arcs, of certain entities called nodes or vert

hat is meant to implement the graph and

finite (and possibly mutable) set of ordered pairs,
ices. As in mathematics, an edge

155
the graph struclure, or may

t or go from X to y. The nodes may be part of
represented by integer indices or references
re may also associate to each edge som
grap fora numeric attribute (cost, capacity, length, etc.).

lic labé . A tree is just a restricted form a graph. Tree hay
D;ffereﬂnd donot contain cycles. They fit within the category of
sh(;P ?.30 trees are DAGS with .the restriction that a child can only ha

g y search breadth first or depth first. The same applies 1 tve one parent,
sed to model an enormous amount of things. 0 lree graphs are

entatjons : Different data structures for the representation of graphs
; u ; are used

id to oln
e edge v
g alue, such ag a

E ‘direction (parent/chilg
irected Acyclic graphs

Repres
ctice : . Vertices are stored as records j
djacency list : ‘ i or objects, and eve
o .:"15 t of adjacent vertices. This data structure allows to store addiﬁorza\:i:;: sto:ﬁs
on the
vertices.

Incidence list : Vertices and edges are stored as records or objects. Each vert
- ex

stores its incident edges, al"'l?l each edge stores its incident vertices This dat

structure allows to store add_ltionall data on vertices and edges. ) 2
e Adjacency matrix : A two—dnmensmngl matrix, in which the rows represent source
vertices and columns represent destination vertices. Data on edges and vertices
must be stored externally. Only the cost for one edge can be stored between each

pair of vertices.
Incidence matrix : A two-dimensional Boolean matrix, in which the rows represent

the vertices and columns represent the edges. The entries indicate whether the
vertex at a row is incident to the edge at a column.
Q 26. What do you mean by path matrix? (PTU, Dec. 2011)
Ans. Let G be a simple directed graph with m nodes, vy, Vy, ..... Vp,. The path matrix or
reachability matrix of G is the m-square matrix defined as follows :

B o 1 there is path from v; to v;
1~ 1o otherwise

Suppose there is path from v; to. v;. Then there must be simple path from v, to v; when
vil = v;. Since, G has m nodes, such a simple path must have length m-1 or less, or such a

‘cycle must have length m or less. This means there is no zero ij entry in the matrix Bm,

defined at the end of preceding subsection.
Q 27. What is a degree of a graph?
Ans. In graph theory, the degree of a

vertex of a graph is the number of edges

incident to the vertex, with loops counted twice.
Maximum degree is 5.

(PTU, May 2013)




1 .

56 LO3D> Data Structure&AIgoﬁth
Q 28. What is meant by strongly connected in a graph ? (PTU, Dec. 2 Mms
Ans, An undifeoted graph is connected, if there is a path @ ™ 014}

A gli:ected graph is said to be strongly connected if every
pfu‘r of distinct vertices Vi, Vj, are connected. Thus if there exists a
directed path from vi to vj then there also exists a directed path 0

from vj and vi.

from everyveriex to every other vertex. A directed graph with this
property is called strongly connected. ’ \

A strongly connected graph

Q 29. Discuss Depth First Search traversing techniques for graphs with the he|
P

of suitable example. Write program for the same.
Ans. Depth First Search traversing technique : Refer to Q.No. 14 & 24(a)

int a[20][20], reach[20],n;
void dfs(int v)
{
int i;
reach[v] = 1;
for (i =i;i<=n;i++)
if (a[v][i] && !reachli])

{
" printf(“n% d — %d” , v, i);
dfs(i);
}

void main( ) : .

{
int i, j, Count = O;

cirscr( );
printf(“n Enter number of vertices:");

scanf (“%d",&n);
for (i = 1, i<=n, i++)

reachli] = 0;
for (j = 1; j < =n; j++)

a [ilfi] = 0;

).
printf(“n Enter the adjacency matrix : n’);
for (i=1;i<=n;i++)
for(j=1;j<=nj++)

scanf(“%d”", &ali]li]);

dfs(1);

printf(“n”);

or(i=1;i<=n; i++)

(reach [i])

(PTU: Dec. 201 B)

nt"’*:

} cou e n)h
'“rintf(“" GrapP!

Gou "y -
is connec‘lEd )i

ool connected");

. traverse a graph using Depth First search.
Algorithm 10 (PTU, May 2018)
depﬂ"lﬁlslseard'l on a graph G beginning at a starting node A.
dy state (STATUS = 1)

es a
eal =
e e STACK and change its status to the waiting state (STATUS =

til STACK is empty. )
4 and 5 un and change its status to the processec

peat sttggsnode N of STACK. Process N
e ,

Pop - ¥ s
4 ctate (STAT:figKS;“ the neighbours of N that are still in the ready state (STATUS :
5. Push ;gtr?aﬁge their status to the waiting state (STATUS = 2) [End of step 3 loop]
1) an
g. Exit. ke a binary search tree by considering the following eight numbers.
503;4%1 24, 67, 40, 60, 52. (PTU, May 201

Q 32. Consider the directed Graph G.

v 3 v,

V3 V,

w . - Vs
%;I)) I:ind indegree and outdegree of each node.
iy nd number of simple paths.

S there any source or sink ?

Ans, (i) Find :
Indegree d indegree and outdegree of each node.

Vq

(PTU, M:

n
s



V=2

e
(ii) Find number of simple paths
Simple paths are :
Vi > Vs >V,
2 =+ ¥y
V3 o VS - V4
5 >V,
(iii) Is there any source or sink
V4 in sink
Q 33. What is undirected graph ?

' - i (PTU, ma
Ans. An undirected _glraph. IS graph i.e., a set of objects that are connected togetp,
where all the egges are bidirectional. An undirected graph is Sometimes called an yp, diremer.
graph is sometimes called an undirected network. In contrast a graph where the edges poier::

n a direction is called a directed graph.
ure to implement the adjacent matrix, (PTU

y 201 9)

Q 34. Write the proced
Ans. The following is the procedure to im,
/* get a list of all the nodes in our graph*/
$ array_nodes = $nonDirected Graph —> get Nodes ()
/* This is where will save the adj. matrix */

$adj_matrix = array ( );

/* Reset the matrix to all ‘0’ s */

for each ($nodes_names as $row){

for each ($nodes_names as $col){

$adj_matrix [$row] [$col] = 0;

}

}

/* Now build the adj.matrix */

for each ($array_nodes as $nd){

$row = $nd —> getData ( );

$neighbours =$nd —> getNeighbours ( );
for each ($neighbours as $neighbour)

{
$col = $neighbour —> getdata () ;
$adj_matrix [$row] [$col] = 1;
A aaao

at |

159

MODEL TEST PAPERS
: (Unsolved)

S5 MODEL TEST PAPER — 1
3

jdates ¢
o ns to €419 Isory- ion B
struct” A s COMPYUS L ns from section B.
| . i rom section C.

SECTION — A

algl‘]ogteht::t;}en stack and queue.

i stack ?
i operations on . =
i V? ngl:seueps 2 How are they implemented ?
priority

K list 7

pefine &
[b) Dlstm gu's
(c What aré

i lin .
: ?:Utr)llzed for garbage collection *
is the

i ?
epresented in memory using ar;ays.
: r'?pHov.v\.' heaps are implemgnted.
. totic rotation ? Mention its types.

How are treé
i heap

What is @
([:;) What is an asymp
5 What is an AVL tree.
" SECTION-B e
i lain time space trade off.

ity of an algorithm ? Also exp
t is the complexity 0
Q2. (a) Wha

(b) Write an algorithm for Binary se.arch.
Q3. Consider the following in fix expression :

T(E-F) . | ‘
S::Bt:eoe}xpr(ession and convert into the equivalent post fix expression.
e

4. Write an algorithm to insert new node at the enFi of a.Double Iink:dc;\st.
gsl What is quick sort ? Sort the following array using quick sort metho
24, 56, 47, 35, 10, 90, 82, 31. . . ]
Q6. Whatis adjacency matrix representation of a graph in memory ?

SECTION-C
Q7. What is Data Structures? What are different data structures operations.

Q8. What are the various operations possible on a sing'y’ link list 2 Explain with the diagrams.

Q9. Sor the following list of elements using Bubble Sort :

98,89,44,7, 5 35, 12, 100, 2, 57
What is its complexity ?



_____ i ; .

LO3DY Data Structure & Algorithmg
o —

LO3ID> MODEL TEST PAPER — 2 I

Instructions to candidates :

1. Section A is compulsory.
2. Attempt any four questions from section B.

3. Attempt any two questions from section C.
SECTION — A

Q1. (a) Why Complexity of linear search is of the order of O (n) ?

(b) What is under flow?
(c) What is traversing? Write an algorithm for traversing a link list?

(d) What is a spanning tree ?

“ (e) Define hash function.

160

(f) Distinguish between BFS and DFS.
(g) What is time space trade off ?.
(h) What is a top pointer of stack.
(i) What is degree of a graph ?
\ (j) Construct the binary tree for the following expression.
;J (2x -3z +5) (3x -y + 8) -
; : SECTION-B
Q 2. Wirite a program for implementing stack using arrays.
Q 3. Write suitable routines to perform insertion and deletion operations in a linked list.
Q 4. Write short notes on : ‘
(a) B-Trees
(b) AVL search Trees
(c) M—-Way search Trees
Q 5. Sort the following list of numbers.
52, 1, 27, 85, 66, 23, 13, 57

Using any efficient sorting algorithm.
Q 6. Explain the various collision resolution techniques used for hashing with example.

SECTION - C
Q7. Explain various types of queues with examples and write an algorithm to impleme

circular queue. :
Q 8. What are the various operations possible on a singly link list ? Explain with the diagran

Q9. Write an algorithm for preorder, inorder and postorder traversal in a tree.

QoQ




{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }



